Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 28. 04. 2018 20:41 — Editoval stuart clark (01. 05. 2018 10:57)

stuart clark
Příspěvky: 1015
Reputace:   
 

roots of function

If $f(x)$ is twice differentiable function on $[a,e]$ and for $a<b<c<d<e,f(a)=0,f(b)=2,f(c)=1,f(d)=2,f(e)=0$

Then minimum number of roots of the equation $f(x)f''(x)+(f'(x))^2=0$ is

Offline

 

#2 28. 04. 2018 21:09 — Editoval laszky (02. 05. 2018 01:05)

laszky
Příspěvky: 2362
Škola: MFF UK, FJFI CVUT
Reputace:   195 
 

Re: roots of function

Hi

Offline

 

#3 01. 05. 2018 10:56

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: roots of function

↑ laszky: Thanks .

Offline

 

#4 01. 05. 2018 10:58

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: roots of function

Please explain

If $f(x)$ is twice differentiable function on $[a,e]$ and for $a<b<c<d<e,f(a)=0,f(b)=2,f(c)=-1,f(d)=2,f(e)=0$

Then minimum number of roots of the equation $f(x)f''(x)+(f'(x))^2=0$ is

Offline

 

#5 02. 05. 2018 01:30 — Editoval laszky (02. 05. 2018 13:21)

laszky
Příspěvky: 2362
Škola: MFF UK, FJFI CVUT
Reputace:   195 
 

Re: roots of function

↑ stuart clark:

Since $\frac{1}{2}f^2(x)$ is non-negative and has zeroes at $a$, $e$ and somewhere between $b$, $c$ and $c$,$d$, there exist at least 6 roots of  $g(x)=\frac{1}{2}f^2(x)-\frac{1}{2}$ in $[a,e]$. Consequently, as in the previous case, there exist at least 4 roots of $g''(x)=\left(\frac{1}{2}f^2(x)-\frac{1}{2}\right)''= f(x)f''(x)+(f'(x))^2=0$ in $[a,e]$.

Offline

 

#6 03. 05. 2018 07:10 — Editoval stuart clark (03. 05. 2018 09:12)

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: roots of function

Thanks ↑ laszky: But answer Given as $6$.

i have one doubt How can we assume function $g(x)=\frac{(f(x))^2}{2}-1$ in first  question. (We can assume other function also like $g(x)=\frac{(f(x))^2}{2}-2$ type

Similarly How can we assume function  $g(x)=\frac{(f(x))^2}{2}-\frac{1}{2}.$ for second question. We can also assume other function.

please clearfy me , thanks in advanced.

Offline

 

#7 03. 05. 2018 10:43

laszky
Příspěvky: 2362
Škola: MFF UK, FJFI CVUT
Reputace:   195 
 

Re: roots of function

↑ stuart clark:

The crucial words are "at least".  At first you have to notice that $\left(\frac{1}{2}f^2(x)\right)''=f(x)f''(x)+(f'(x))^2$, then you observe that $\left(\frac{1}{2}f^2(x)\right)''=\left(\frac{1}{2}f^2(x)-ax-b\right)''$ for arbitrary $a,b\in\mathbb{R}$ and you choose $a,b$ in such a way that $g(x)=\frac{1}{2}f^2(x)-ax-b$ has maximal possible zeros. If you choose them wrong, you prove only partial result (not the optimal one) - like me in my previous answer. (I forgot that you can substract any linear function and substracted only constant). My approach is: draw a picture of the presumable graph of the function $\frac{1}{2}f^2(x)$ and then try to draw a line which intersects the function $\frac{1}{2}f^2(x)$ in maximal possible points.

The following picture shows my first attempt with 6 zeros of the function g and my second attempt with 7 zeros of the function g (due to the zero derivative of $\frac{1}{2}f^2(x)$ there are two intersections near the point $a$ ). Hence, using this second attempt, we can prove that there exists at least 5 roots of $f(x)f''(x)+(f'(x))^2$. But 6 is still problem for me.

Offline

 

#8 05. 05. 2018 04:11

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: roots of function

Thanks ↑ laszky:.

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson