Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Stránky: 1 2
Zdravím, mám úlohu vyřešit průběh funkce, mám napsané kroky, kterými se musím řídit, ale zasekl jsem se už na prvím, byl bych rád, kdyby mi někdo v případě zaseknutí se pomohl,třeba jako teď s určením D(f), když , poté se pokusím dále pokračovat, dokud nebudu mít zase problém. Děkuji
Offline
↑ LamaGanja:
Zdravim,
Pro určení definičního oboru je potřeba se podívat na vlastnosti logaritmické funkce a funkce sinus a pak se ozvat, k jakému závěru jsi přišel.
Kolega halogan je online, snad dohledne na zdarný průběh, děkuji a zdravím :-)
Offline
↑ LamaGanja:
Ne. Logaritmus má sice definiční obor R+, ale u sinu nás zajímá obor hodnot, protože hodnota sinu pro dané x se předá jako argument logaritmu. Sinus má obor hodnot <-1; 1> a nás tedy zajímá, kdy sinus bude (0; 1>. Protože jen takové x, pro které bude sinus kladný, můžeme použít.
Zdravím ↑ jelena:. Čekal jsem na odpovědi ostatních, protože si šetřím příspěvky... blížím se k tisícovce :)
Offline
↑ LamaGanja:
Ne. Pleteš si pojmy trochu.
1) Do R+ nula stejně nepatří.
2) Podívej se na graf funkce sinus. Když bude x = 3/2 pí, tak sinus bude -1. A -1 přece nemůže být argument logaritmu. Logaritmus -1 (v oboru reálných čísel) neexistuje. Proto si ještě jednou pečlivě přečti mou předchozí odpověď a zkus to z toho grafu nějak vykoumat.
http://cs.wikipedia.org/wiki/Soubor:Sin.svg
Offline
↑ halogan:
Takže sin(x) musí být vždy kladné a to je v intervalu , ale jak to zapsat jako definiční obor?
Offline
Pro kolegu halogana - pokud to nějak zasahuje do denních plánu (třeba do opakování otázek ZSV), tak to nějak naznač. Děkuji - umíte to moc dobře, je zbytečné, abych do toho vrtala.
Zřejmě kolega obedvá, tak zaskočím:
↑ LamaGanja:
já bych to napsala takto:
nebo tak:
-----
Odpusť, Mariane, odpusť, Pavle.
Kolegyně má v hlavě vygumovane - česky neumí :-(
Offline
My to psali jako
A očividně si to pamatuju blbě :) Kolegyně doplnila to velké sjednocení. Tak je to správně.
↑ jelena:: vypracovávám si otázky do češtiny. Z dnešního přídělu 3 otázek mám již 2 hotové, takže si dávám oddych.
Offline
↑ halogan:
Aha no mi to tak píšem, tak snad to nebude vadit :D Takže tohle je D(f) a další fáze je spojitost funkce, takže se na to vrhnu, ale musím odjet, takže až večer zatím díky za výpomoc, pomalu to začínám chápat
Offline
↑ halogan:
skupina mých maturujících kreativců - tento rok jistím ZSV, češtinu, chemii (matematiku pouze diferenciální a integrální počet) mi dnes dala volno. Ale v útery jsme opakovali 5 hodin 10 otázek do ZSV. Vypracováno máme všechno.
Dnes ovsem musím jeste dopracovat 18 statistických tabulek - tak na vás vidím, ale psát se mi moc nechce. Navíc nelibí se mí, když se sekaji jen hotové výsledky - snad to náš kolega ↑ LamaGanja: ocení.
Děkuji za zásah a kolegu zanechávam v dobrých rukou.
Offline
Tak jsem nějakej vymazanej dneska, nemohl bych dostat nápovědu, jak postupovat k zjíštění spojitosti funkce? Když vím podle Df, že se jedná o interval (0,PI)+2kPI, tak logicky by měla být spojitá v každém daném intervalu, protože se jedná o funkci sinus ne? Ale nevím, čeho tím docílím
Offline
↑ LamaGanja:
zadaná funkce je spojita na definičním oboru, který jsme nasli v předchozích krocích (nemontuj sem funkci sin jako takovou, řešime celé zadání funkce).
Mimo definiční obor spojita není (ona tam vůbec není), ale je potřeba vyšetřit chování funkce v krajních bodech def. oboru. Tedy limitu funkce, když se bliží k 0 zprava (0+) a k pi zleva (pi -)
Budeš vědet, jak se chová funkce na okraji definičního oboru.
OK?
Offline
↑ jelena:
Takže mám , ale teď si nějak nejsem jistý u toho logaritmu, logaritmus 0 přece nemůžu provést a nějak nemůžu přijít na to, když mám logaritmus 0+.
Tak jsem už na to možná přišel, když mám nulu z prava, tak by měla být limita sin(0)-ln(sin(0))=0-(-nekon.)=+ nekonečno?
Offline
↑ LamaGanja:
Dělaš nám samou radost, kolego, jen pokračuj a kolega (po transformaci) tedy "svaty halogan" snad bude take nablizku. Zdravím :-)
Offline
Takže pro pí zleva mám taky nekonečno, tak předpokládám, že když její chování jde zleva i z prava k nekonečnu měla by být funkce asi nějaká parabola ne? Takže se vrhám na další krok a to je sudost,lichost,periodičnost
Takže není ani sudá ani lichá, ale měla bybýt periodická, jak můžu vidět už v definičním oboru?
Offline
v předchozích krocich vše OK, derivaci jsem upravila ke společnému jmenovateli
sin x nesmí být 0, a to je stejné jako D(f) samotné funkce.
OK?
Editace: Kolega je online, už dohledne, děkuji
Offline
Jednodušší než hledat záporné a kladné "části" první derivace (což určuje, zda funkce na dané části [intervalu] klesá, či roste), bude najít extrémy. Najdi si, kdy první derivace bude nulová, spočítej hodnoty v jejím okolí a už budeš mít jasno (min/max/inflexe)
Pak ještě druhou derivaci pro možné inflexe.
Offline
↑ svatý halogan:
Tak mi vyšlo, že , takže to je pro mě lokální, ale jak poznám jestli maximum nebo minimum, až podle dosažení hodnot nebo se to dá ověřit i jinak?
Offline
↑ LamaGanja:
Jestli to je jediný stacionární bod (podezření na extrém či inflexi) a víš, jak se funkce chová na kraji definičního oboru (tebou vypočítané limity), tak je pak jasné, zda to je minimum, ti maximum.
Offline
↑ svatý halogan:
Takže v případě, že chování mijde k nekonečnu na obou stranách, stává se pi/2 mým lokálním minimem a funkce je tedy klesající v intervalu (0,PI/2)+2kPI, poté je lok min. v PI/2 a dále je rostoucí (PI/2,PI)+2kPI?
Offline
↑ LamaGanja:
Přesně tak. Ještě bys mohl spočítat druhou derivaci, abys objevil případné inflexe. Je jasné, že kolem extrému a u asymptot bude funkce konvexní, ale může přejít někde na konkávu.
Offline
Stránky: 1 2