Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 10. 12. 2014 21:43

vviston
Příspěvky: 77
Reputace:   
 

Lineární prostor vs těleso

Ahoj, rád bych se zeptal, jaký je rozdíl mezi tělesem a lineárním prostorem. Pořád si to nemůžu nějak ujasnit. Tuším, že lineární prostor může být (nebo dokonce je) tělesem, ale každé těleso nemusí být lineárním prostorem. Mohl by mi někdo tedy dát konkrétní příklad? Děkuji

Offline

 

#2 10. 12. 2014 21:55

Eratosthenes
Příspěvky: 2764
Reputace:   136 
 

Re: Lineární prostor vs těleso

ahoj ↑ vviston:,

Žádné těleso není lineární prostor a žádný lineární prostor není těleso. Jsou to dvě různé struktury. Lineární prostor je speciální grupa (tu tvoří vektory). Ale aby grupa byla lineární prostor, musí "spolupracovat" s tělesem skalárů.

Pak říkáme, že se jedná o lineární prostor  n a d   tim či oním tělesem.


Budoucnost patří aluminiu.

Offline

 

#3 11. 12. 2014 08:49 — Editoval radekm (11. 12. 2014 09:07)

radekm
Příspěvky: 146
Reputace:   11 
Web
 

Re: Lineární prostor vs těleso

vviston napsal(a):

Tuším, že lineární prostor může být (nebo dokonce je) tělesem

Obvykle to tak není. Když máte vektorový prostor nad tělesem $\mathbb{F}$, tak nemusíte mít násobení vektorů.

Eratosthenes napsal(a):

Jsou to dvě různé struktury.

To ano. Některé množiny však lze chápat zároveň jako lineární prostor i jako těleso. Například $\mathbb{C}$ je těleso, ale je to také lineární prostor nad $\mathbb{R}$.

Obecněji, je-li $\mathbb{F}_1$ podtělesem $\mathbb{F}_2$, pak $\mathbb{F}_2$ můžeme chápat jako vektorový prostor nad $\mathbb{F}_1$.

Offline

 

#4 12. 12. 2014 12:27 — Editoval Eratosthenes (12. 12. 2014 12:41)

Eratosthenes
Příspěvky: 2764
Reputace:   136 
 

Re: Lineární prostor vs těleso

↑ radekm:


radekm napsal(a):

Některé množiny však lze chápat zároveň jako lineární prostor i jako těleso.

To jistě, ale to neznamená, že 
                                             každé těleso je lineární prostor,
ani to, že
                                             každý lineární prostor je těleso. 

Tak byl totiž formulován problém (aspoň jsem to tak pochopil).

radekm napsal(a):

Například $\mathbb{C}$ je těleso, ale je to také lineární prostor nad $\mathbb{R}$.

Ani to není přesné. Množina $\mathbb{C}$ není těleso. Těleso je až $\mathbb{(C; +;.)}$ Vektorovým prostorem nad něčím je grupa  $\mathbb{(C;+)}$ nad něčím. A grupa není těleso. Už proto ne, že má jen jednu binární operaci


Budoucnost patří aluminiu.

Offline

 

#5 11. 09. 2019 23:04

Roscelinius
Příspěvky: 51
Škola: FEKT
Reputace:   
 

Re: Lineární prostor vs těleso

A co vektorový prostor se skalárním součinem (obecně vnitřním součinem) je to těleso nebo není? (myšleno příkladem tělesa). Pokud ne, tak jaký je přesně rozdíl v definici těchto dvou druhů struktur? Díky

Offline

 

#6 12. 09. 2019 21:46

Stýv
Vrchní cenzor
Příspěvky: 5693
Reputace:   215 
Web
 

Re: Lineární prostor vs těleso

↑ Roscelinius: Je skalárním součinem vektorů vektor?

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson