Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 01. 12. 2009 18:18

Maca
Příspěvky: 166
Reputace:   
 

Meze posloupnosti

Dobrý večer,
mohla bych Vás poprosit o kontrolu následujícího řešení úkolu:
Rozhodněte o dané posloupnosti, zda je omezená (určete meze), rostoucí či klesající (dokažte), má vlastní limitu (určete ji):

{(-1)^n * (n+2/n)}

Vypočítala jsem liché členy :  a_1 = -3  ...  a_3 = -5/3  ...  a_5 = -7/5  ...  a_7 = -9/7  ... pohybuje se od -3 do -1

                        sudé členy:  a_2 = 2  ...  a_4 = 3/2  ...  a_6 = 4/3  ... a_8 = 5/4   ... pohybuje se od 2 do 1

jako celek není posloupnost ani klesanící ani rostoucí..... je to zatím správně?

A jak je to, prosím, s určením mezí a limity?
Děkuji.

Offline

 

#2 01. 12. 2009 18:57

jarrro
Příspěvky: 5472
Škola: UMB BB Matematická analýza
Reputace:   303 
Web
 

Re: Meze posloupnosti

ohraničená je určite napr číslami -3 a 2 limitu nemá lebo pre liché členy je iná "limita" -1 a pre sudé 1
rastúca ani klesajúca nie je


MATH IS THE BEST!!!

Offline

 

#3 01. 12. 2009 19:02

Maca
Příspěvky: 166
Reputace:   
 

Re: Meze posloupnosti

Moc děkuji a mohu poprosit se ještě podívat na můj příspěvek Posloupnost - sudé a liché členy. Děkuji.

Offline

 

#4 01. 12. 2009 20:31

Maca
Příspěvky: 166
Reputace:   
 

Re: Meze posloupnosti

Ještě má příklad část B:

{1 - (n+2/n)}

Liché členy:  a_1 = -2  ...  a_3 = -2/3  ...  a_5 = -2/5     pohybuje se od  -2  k  0
Sudé členy:  a_2 = -1  ...  a_4 = -1/2  ...  a_6 = -1/3     pohybuje se od  -1  k  0

Obě jednotlivě i jako celek jsou klesající.
Limita je v obou případech  0.

A meze nemá? Jak se to, prosím, pozná?
Děkuji.

Offline

 

#5 01. 12. 2009 21:14

Maca
Příspěvky: 166
Reputace:   
 

Re: Meze posloupnosti

Mohl by mi někdo z Vás odborníků, prosím, zkontrolovat můj výtvor (tzn. příklad B) a naznačit, jak je to s určováním mezí?
Moc děkuji.

Offline

 

#6 01. 12. 2009 21:15

Kondr
Veterán
Místo: Linz, Österreich
Příspěvky: 4246
Škola: FI MU 2013
Pozice: Vývojář, JKU
Reputace:   38 
 

Re: Meze posloupnosti

↑ Maca:Shora je ohraničená nulou, zdola -2. Zatímco -2 je nejmenší člen, největší člen nemá. Pozná se to z průběhu funkce $f(x)=1-(x+2)/x=-2/x$.

Nevidím důvod uvažovat zvlášť liché a sudé členy.


BRKOS - matematický korespondenční seminář pro střední školy

Offline

 

#7 01. 12. 2009 21:19

Maca
Příspěvky: 166
Reputace:   
 

Re: Meze posloupnosti

Moc díky !!!

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson