Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 09. 01. 2011 19:43 — Editoval Reshi (09. 01. 2011 19:47)

Reshi
Příspěvky: 25
Reputace:   
 

Limita

zdravim prosim vas uz celkom hodnu chvilu rozmyslam nad tym ako poriesit nasledujucu limitu:
$\lim_{n\rightarrow\infty} ( \frac {2^n+2*3^n} {2^n*3+3^n})= ???$

Diki :)

Offline

  • (téma jako vyřešené označil(a) jelena)

#2 09. 01. 2011 19:46 — Editoval teolog (09. 01. 2011 19:46)

teolog
Místo: Praha
Příspěvky: 3497
Škola: MFF + PřF UK
Pozice: Gymnázium Přírodní škola - učitel (M, Z)
Reputace:   167 
 

Re: Limita

↑ Reshi:
Také zdravím,
x se blíží k nekonečnu, ale výraz vůbec x neobsahuje. Neplatí to spíš pro n?

Offline

 

#3 09. 01. 2011 19:47

Reshi
Příspěvky: 25
Reputace:   
 

Re: Limita

och ano ospravedlnujem sa hned prepisem

Offline

 

#4 09. 01. 2011 22:17

PeterSheldon
Příspěvky: 128
Reputace:   
 

Re: Limita

↑ Reshi:

tento příklad není vůbec těžký.. stačí jen vhodně vytknout.  Je nutné si uvědomit, co budeš vytýkat. Pokud bychom vytkli 2^n dostali bychom se pak k výrazu nekonečno / nekonečnem, což není dobře.

úprava je následující:

http://www.sdilej.eu/pics/68ad6f4e1fbd59ea6d95f8d6ab89ae24.png

poslední krokem je, že v čitateli a jmenovateli se zkrátí 3^n. Pak je zřejmé, že (2/3)^n (jde-li n-> nekonečna) pak celý výraz jde k 0 .. ve výsledku tedy dostaneš 2/1 tudíž výsledek je 2.

Offline

 

#5 10. 01. 2011 12:35

Reshi
Příspěvky: 25
Reputace:   
 

Re: Limita

jasne dakujem velmi pekne :) inak tak som to aj spravil raz len som nevidel  to riesenie hentak hned :)

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson