Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Dobrý den, potřebovala bych menší radu.
U definičního oboru mi nedělá problém určení podmínek, ale spíše zakreslení na osu a tudíž mi sloučení podmínek málokdy vyjde správně =(.
Např. řeším podmínku x+4>0, vyjde mi x>-4, když chci -4 zakreslit na osu tak to bude -nekonečno,-4? Koukala jsem se právě na řešení a je tam zakresleno -4, +nekonečno.
A další problém:řeším podmínku ln:
x^2+2x-15/x-1>0
u čitatele mi vyjde: (x+5).(x-3) a z toho nulové body x=-5 a x=3
ve jmenovateli pak x se nesmí rovnat 1.
Proč v řešení mají sjednoceno -5 a 1 ?
Moc by jste mi pomohli, děkuju.
Offline
k tomu prvému...
x+4>0, vyjde mi x>-4 toto máš správne, na osi reálnych čísel si teda vyznačíš bod -4. Z nerovnosi ale vyplýva, že čísla ktoré hľadáš musia byť väčšie ako -4... preto je to interval (-4, nekonečno)
Čo sa týka druhého príkladu, tak nulové body sú -5, 3 (z čitateľa) a z menovateľa 1 (i keď nepatrí do definičného oboru). Opäť si zakresli tieto body na os reálnych čísel. V tomto prípade máš najjednoduchšie dosadiť si nejaké číslo za x z jednotlivých intervalov. Povedzme, že si dosadíš x=2
potom dostaneš - (4+4-15)/(1)=-7 - teda záporné číslo. Na intervale (1,3) je teda tvoj výraz menší ako 0 (odporúčam si pri tej osi ktorú si nakreslíš poznačiť znamienkom "-" že na danom intervale je ten výraz menší ako 0). Podobným dosadením z iných intervalov zistíš, že
(- nekonečno, -5) - záporné
(-5,1) - kladné
(1,3) - záporné
(3,nekonečno) - kladné
výsledkom je teda zjednotenie intervalov (-5,1) a (3,nekonečno), nakoľko daný výraz mal byť väčší ako 0 (teda kladný)
Offline