Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 26. 02. 2011 16:38

sait-cz
Příspěvky: 48
Reputace:   
 

Obracení zlomku

Nůžete někdo poradit podle čeho je možné obracet zlomek?
http://img10.imageshack.us/img10/4913/substituce.png

Uploaded with ImageShack.us

vysvětlení že je to převracené násobení mi tu poněkud nejde do hlavy...

Offline

  • (téma jako vyřešené označil(a) sait-cz)

#2 26. 02. 2011 16:39 — Editoval BakyX (26. 02. 2011 16:41)

BakyX
Cat Lover & S.O.A.D. Lover
Příspěvky: 3416
Škola: UPJŠ
Pozice: Študent
Reputace:   158 
 

Re: Obracení zlomku

Ahoj..Zlomok obrátiš tak, že vymeníš čitateľa a menovateľa, pričom menovateľ a čitateĽ musia byť rôzny od nuly


1^6 - 2^6 + 3^6 = 666

Offline

 

#3 26. 02. 2011 16:51 — Editoval sait-cz (26. 02. 2011 16:56)

sait-cz
Příspěvky: 48
Reputace:   
 

Re: Obracení zlomku

nechápu podle čeho lze takto zaměnovat vychází to, ale podle čeho to tak je zajimalo by mne pravidlo kdybych ses tím potkal ve více násobném zlomku

Offline

 

#4 26. 02. 2011 17:12 — Editoval Hudler (26. 02. 2011 18:07)

Hudler
Příspěvky: 130
Škola: FIT CVUT
Reputace:   
 

Re: Obracení zlomku

Jenže ono to nevychází...

// Doplním: $ x^{-n}=\frac {1}{ x^n}$

Offline

 

#5 26. 02. 2011 17:13 — Editoval Dana1 (26. 02. 2011 17:33)

Dana1
Host
 

Re: Obracení zlomku

↑ sait-cz:

Nerozumiem otázke. Prevrátiť zlomok znamená (ako povedal už BakyX) zameniť navzájom čitateľa a menovateľa, aj u zložených zlomkov. Možno by bolo dobré dať konkrétny príklad.


Myslíš, že keď urobíš 1/x  nedostaneš to isté, ako keď zameníš čitateľ a menovateľ navzájom?

Tebe sa to úplne nepodarilo, ale možno si to dobre myslel...

 

#6 26. 02. 2011 19:50 — Editoval Dana1 (26. 02. 2011 21:12)

Dana1
Host
 

Re: Obracení zlomku

↑ sait-cz:

Myslím, že žiadne 1/x zapisovať netreba, proste vymeníš navzájom čitateľ s menovateľom, это всё.

 

#7 26. 02. 2011 19:51 — Editoval sait-cz (26. 02. 2011 19:54)

sait-cz
Příspěvky: 48
Reputace:   
 

Re: Obracení zlomku

jenom,že v tý učebnici ja to tak zapsané... jedná se o substitucijde o to že budu muset provést zápis ajak ho provést ?

Offline

 

#8 26. 02. 2011 19:53

Dana1
Host
 

Re: Obracení zlomku

↑ sait-cz:

Zadaj príklad, toto nemá význam.

 

#9 26. 02. 2011 20:00 — Editoval mikl3 (26. 02. 2011 20:01)

mikl3
Příspěvky: 2635
Škola: FS ČVUT (12-16, TZSI, Bc.)
Pozice: Studuji magisterske
Reputace:   78 
 

Re: Obracení zlomku

↑ sait-cz: aha, tak tohle chápu, ale nemyslím si (co jsem zatím viděl), že by se to na hodně školách řešilo takhle, toto řešení je pěkné, ale obvykle jsem to počítal, že jsem si udělal společného jmenovatele a sečet la pak jel a podmínky
jinak k příkladu: je to zajímavé ano, využívá se tam toho, že $\frac{t+1}{2t}=(\frac{2t}{t+1})^{-1}$


jinak přeci to nemusíš řešit substitucí pokud se toho bojíš, můžeš to udělat, že sloučíš zlomky (jeden převedeme a pak sečteme) a vynásobíš jmenovatelem a bude to

Offline

 

#10 26. 02. 2011 20:05 — Editoval mikl3 (26. 02. 2011 20:06)

mikl3
Příspěvky: 2635
Škola: FS ČVUT (12-16, TZSI, Bc.)
Pozice: Studuji magisterske
Reputace:   78 
 

Re: Obracení zlomku

↑ sait-cz: tak pokud jsi ve 4. ročníku, tak tohle by měla být samozřejmost
ano koukej: $(\frac{2t}{t+1})^{-1}=\frac{1}{{\frac{2t}{t+1}}}$ a to si přepíšeme jako násobení a to už umíš ne?

Offline

 

#11 26. 02. 2011 20:05 — Editoval Dana1 (26. 02. 2011 20:06)

Dana1
Host
 

Re: Obracení zlomku

↑ sait-cz:

Máš tam stále chybu medzi tými dvoma "rovná sa",  (t+1)/(2t)  =  1/  [(2t) / (t+1)]   


Je tam len napísané, že tie zlomky na pravej a ľavej strane sú prevrátené, čo je vidno na prvý pohľad.  Symbol  1/x  sa  číta  prevrátená hodnota

x
, aby sa to nemuselo hovoriť, takto  to môžeš chápať..

Keď vidíš takúto rovnicu, že tie zlomky majú ako keby prehodené čitatele s menovateľmi, 1 zlomok vždy označ x a miesto toho prevráteného zlomku

vždy napíš  1/x.

 

#12 26. 02. 2011 20:17 — Editoval sait-cz (26. 02. 2011 20:21)

sait-cz
Příspěvky: 48
Reputace:   
 

Re: Obracení zlomku

jo díky takže když je vlastně celý zlomek na minus n -tou mužu ho rpohodit...?
tak jako je tomu tak na obrazku?

Offline

 

#13 26. 02. 2011 20:18

sait-cz
Příspěvky: 48
Reputace:   
 

Re: Obracení zlomku

↑ mikl3:podívej sena to jednou ještě...

Offline

 

#14 26. 02. 2011 20:21

mikl3
Příspěvky: 2635
Škola: FS ČVUT (12-16, TZSI, Bc.)
Pozice: Studuji magisterske
Reputace:   78 
 

Re: Obracení zlomku

↑ sait-cz: dívám a asi nechápu, co máš na mysli, sděl mi to

Offline

 

#15 26. 02. 2011 20:21

mikl3
Příspěvky: 2635
Škola: FS ČVUT (12-16, TZSI, Bc.)
Pozice: Studuji magisterske
Reputace:   78 
 

Re: Obracení zlomku

$(\frac{2t}{t+1})^{-1}=\frac{1}{{\frac{2t}{t+1}}}=\frac{t+1}{2t}$ upraveno pro tazatele

Offline

 

#16 26. 02. 2011 20:25 — Editoval mikl3 (26. 02. 2011 21:06)

mikl3
Příspěvky: 2635
Škola: FS ČVUT (12-16, TZSI, Bc.)
Pozice: Studuji magisterske
Reputace:   78 
 

Re: Obracení zlomku

↑ sait-cz: ten prostřední výraz nemohu dát na mínus 1, to bych porušil rovnost


ale v jiném příkladu mohu takže (asi se netrefím podle tvých myšlenek): $(\frac{1}{{\frac{2t}{t+1}}})^{-1}$ tohle myslíš?

Offline

 

#17 26. 02. 2011 21:01

sait-cz
Příspěvky: 48
Reputace:   
 

Re: Obracení zlomku

omlouvámseVšem :_)

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson