Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Ahojky, nevzpomenete si náhodou někdo, jak se dokazuje periodičnost, když řekněme, že netuším, že fce je či není periodická? Definici znám f(x+t)=f(x), nejlépe typický příklad. Jsem se to kdysi učila, ale mám výlohu :-). Např. vím, že sin x je periodická, tak zkusím dosadit: f(sinx + t)=f(sinx)
f(sinx) + f(t) = f(sinx) - což je zřejmě blbost
Kdyby vás něco napadlo, písněte. Díky
Offline
To nie je spravny zapis f(sinx +t). Ty ides dokazat toto:
sin(x+t)=sin(x), co je z definicie zrejme. Vidno to aj na jednotkovej kruznici, kde t=2pi. Potom pre lubovolne x plati ta rovnost.
Napriklad funkcia f(x)=sin(x)cos(x) ma periodu pi, pretoze plati
sin(x+pi)cos(x+pi) = -sin(x)*(-cos(x)) = sin(x)cos(x)
Offline
↑ lukaszh:
OK, to jsem idiot a zapsala jsem to špatně :-0, ale řekni mi, jak se ta perioda vyšetří. Jestli se nepletu, tak v tvém postupu jsi nahradil sin(x+pi) = -sin x, ale co když ty tu periodu znát nebudeš. Přiznám se, že mě teď nenapadá žádný příklad.
Offline
↑ nika.v:
U sin, cos pouzivas souctove vzorce pro goniometricke funkce (je to jen pomucka - pokud bys nevedela, jaka je perioda pro sin, tak ji dokazes najit).
Obecne dokazujes f(x+t)=f(x), zkus treba dokazat, ze x^2 neni periodicka a sin(2x) je a s jakou periodou. OK?
Offline