Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Stránky: 1
If is a
matrices with entries are from the set
. Then total number of Non- Singular matrices
is
Offline
Hi ↑ stuart clark:,
1) The total number of all possible matrices is .
2) By considering the linear dependence of the columns of a matrix, we obtain the total number of all singular matrices is
Offline
↑ vanok:
I understand that in step 2 you consider all matrices with 2nd row being multiple of the first (and vice versa, since there's no 0 involved), matrices with 3rd and 1st row being multiples,
matrices, where all rows are multiples of each other, that you've counted twice in previous cases. I suppose at this point you forgot to count the matrices "sharing" only the 2nd and 3rd row. That should add another
to the brackets.
Let's take a look from the point of constructing a non-singular matrix.
We have picks for the first row (there's no worry about a row of zeroes).
Having picked first row in any way, for the second row we have options. The
corresponds to
multiples of the first row, which are foridden.
For the third row we have options. The 4 corresponds to
multiples of first and second row. It's easy to check that there is no other combination of the first two rows that we'd need to worry about.
So altogether we should have different non-singular matrices.
Offline
Hi ↑ anes:,
Thank you, I completed my oversight.
Obviously, both methods give the same answer.
Offline
Stránky: 1