Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 14. 07. 2012 06:05

stuart clark
Příspěvky: 1015
Reputace:   
 

non- singular matrices

If $A$ is a $3\times 3$ matrices with entries are from the set $\{-1,1\}$. Then total number of Non- Singular matrices $A$ is

Offline

  • (téma jako vyřešené označil(a) byk7)

#2 14. 07. 2012 10:39 — Editoval vanok (14. 07. 2012 21:48)

vanok
Příspěvky: 14600
Reputace:   742 
 

Re: non- singular matrices

Hi ↑ stuart clark:,

1) The total number of all possible matrices is $2^9=512$.

2) By considering the linear dependence of the columns of a matrix, we obtain the total number of all singular matrices is $2^3\cdot( 2\cdot 2^3+ 2^3 \cdot 2- 2\cdot 2 +2\cdot 6 )=320$


3) The total number of all regular matrices is $512 -320= 192$

Edit: A correction of an oversight and addition of details.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#3 14. 07. 2012 20:47 — Editoval anes (14. 07. 2012 20:48)

anes
Příspěvky: 146
Reputace:   14 
 

Re: non- singular matrices

↑ vanok:

I understand that in step 2 you consider all matrices with 2nd row being multiple of the first (and vice versa, since there's no 0 involved), $+$ matrices with 3rd and 1st row being multiples, $-$ matrices, where all rows are multiples of each other, that you've counted twice in previous cases. I suppose at this point you forgot to count the matrices "sharing" only the 2nd and 3rd row. That should add another $2\cdot2^3-4$ to the brackets.

Let's take a look from the point of constructing a non-singular matrix.

We have $2^3$ picks for the first row (there's no worry about a row of zeroes).
Having picked first row in any way, for the second row we have $2^3-2$ options. The $-2$ corresponds to $\pm 1$ multiples of the first row, which are foridden.
For the third row we have $2^3 - 4$ options. The 4 corresponds to $\pm 1$ multiples of first and second row. It's easy to check that there is no other combination of the first two rows that we'd need to worry about.

So altogether we should have $2^3 \cdot (2^3 - 2) \cdot (2^3-4) = 8\cdot 6\cdot 4 = 8\cdot 24 = 192$ different non-singular matrices.

Offline

 

#4 14. 07. 2012 21:53

vanok
Příspěvky: 14600
Reputace:   742 
 

Re: non- singular matrices

Hi ↑ anes:,
Thank you, I completed my oversight.
Obviously, both methods give the same answer.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#5 23. 07. 2012 06:06

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: non- singular matrices

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson