Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 14. 01. 2013 17:43

darkzprior
Zelenáč
Příspěvky: 15
Pozice: Student
Reputace:   
 

Príklad s permutáciami

Ak sa zmensi pocet prvkov o 2 , zmensi sa pocet permutacii 812 krát. Urcte povodny pocet prvkov.
Tak som to ratal - 812*(n-2)!=n!
Vysli mi dva korene kvadr. rovnice - 1 a 2. Myslim ze nieco mam zle...nejake napady?

Offline

  • (téma jako vyřešené označil(a) marnes)

#2 14. 01. 2013 17:46

marnes
Příspěvky: 11227
 

Re: Príklad s permutáciami

↑ darkzprior:

a jak vypadá ta tvá kvadratická rovnice? protože výchozí rovnice je ok


Jo. A na začátku vás zdravím.

Offline

 

#3 14. 01. 2013 17:47 — Editoval darkzprior (14. 01. 2013 17:47)

darkzprior
Zelenáč
Příspěvky: 15
Pozice: Student
Reputace:   
 

Re: Príklad s permutáciami

↑ marnes:
812$n^{2}$-2436n+1624=0

Offline

 

#4 14. 01. 2013 17:48

marnes
Příspěvky: 11227
 

Re: Príklad s permutáciami

↑ darkzprior:

No tak si ji zkus vytvořit ještě jednou. Problém je nalezen


Jo. A na začátku vás zdravím.

Offline

 

#5 14. 01. 2013 17:52 — Editoval darkzprior (14. 01. 2013 18:02)

darkzprior
Zelenáč
Příspěvky: 15
Pozice: Student
Reputace:   
 

Re: Príklad s permutáciami

↑ marnes:
Aha, nasiel som chybu ale vysledok to aj tak moc nezmenilo...
$812n^{2}-2436n+1623=0$
Mozno ze tu rovnicu $812*(n-2)!=n!$ mam zle upravenu...

EDIT: po uprave mi vyslo $812=\frac{n!}{(n-2)(n-1)n!}$
potom $n!$ vykratim
a vyde mi $812=\frac{1}{n^{2}-3n+2}$
menovatel prenesem na druhu stranu a odpocitam 1
a vyde mi kvadr. rovnica $812n^{2}-2436n+1623=0$
fakt netusim co mam zle...co som videl na fore pisu ludia ze to ma mat 1 koren...

Offline

 

#6 14. 01. 2013 18:10

marnes
Příspěvky: 11227
 

Re: Príklad s permutáciami

↑ darkzprior:
už ti to vyřešili jinde


Jo. A na začátku vás zdravím.

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson