Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 19. 03. 2014 18:53

SoniCorr
Příspěvky: 608
Reputace:   
 

Elektrina

Zdravím, mám takový příklad. Věděl by někdo jak to spočítat?
//forum.matweb.cz/upload3/img/2014-03/51575_Bez%2Bn%25C3%25A1zvu.jpg

Offline

 

#2 19. 03. 2014 20:21 — Editoval Brzls (19. 03. 2014 20:22)

Brzls
Veterán
Příspěvky: 1033
Škola: MFF UK (15-..., Bc.)
Pozice: Student
Reputace:   66 
 

Re: Elektrina

Zdravím

Jelikož není uveden žádný předpoklad pro h a d (například, že d je mnohem větší než h), tak není možno zanedbat vliv pravé dolní kuličky na levou horní atd.

1. Urči veškeré síly působící na kuličku napravo. To jestli síla kterou naní působí náboj pod ní plus ta složka síly od té levé dolní, která působí KOLMO na tyč.

2. To samé urči pro druhou kuličku

3. Zvol bod otáčení (nejlépe bod v ložisku). Výsledný moment působící na tyč musí být roven nule.
Dej si pozor na znaménka, tedy na to, které síly ti tu lať otáčejí proti a po směru hodinových ručiček


b)
1.Uvažuj, že momenty sil pouze způsobené elektrostatickou silo sou v rovnováze. (tedy že tak není závaží)
2. Z tohoto výrazu vyjádři h

Napiš kam až si se dostal a pak uvidíme co dál

Offline

 

#3 20. 03. 2014 06:44

SoniCorr
Příspěvky: 608
Reputace:   
 

Re: Elektrina

//forum.matweb.cz/upload3/img/2014-03/93627_1.jpg
Udělám Coulombův zakon mezi AB, BC, CD + na body B a C pusobi gravitacni sila.  AC a DB to už je v tom zahrnuté ne? Pro páku platí něco jako$F_{1}r1 =F_{2}r2$ a potrebuju aby vyslednice sil na leve strane se rovnala vyslednici sil na prave + zahrnout G do vypoctu. To jest $F_{e_{B}}r_{1}=F_{e_{B}}r_{1} - (d-x)G$. Fyziku jsem měl kdysi dávno a mám to jako volitelný předmět. Nevím moc co s tím

Offline

 

#4 20. 03. 2014 07:44

zdenek1
Administrátor
Místo: Poděbrady
Příspěvky: 12436
Reputace:   897 
Web
 

Re: Elektrina

↑ SoniCorr:
pro a)
$(F_{AB}+F_{BD}\sin \alpha )\frac{d}{2}+G(x-\frac{d}{2})=(F_{CD}+F_{AC}\sin \alpha )\frac{d}{2}$
kde $\sin \alpha =\frac{h}{\sqrt{h^2+d^2}}$


Pořádek je pro blbce, inteligent zvládá chaos!

Offline

 

#5 20. 03. 2014 08:22 — Editoval SoniCorr (20. 03. 2014 08:24) Příspěvek uživatele SoniCorr byl skryt uživatelem SoniCorr. Důvod: aaa

#6 20. 03. 2014 08:33

SoniCorr
Příspěvky: 608
Reputace:   
 

Re: Elektrina

u b) by mělo stacit pouze pouzit rovnici od zdenek1, s tím, že nebudene uvažovat G. Je to tak?

Offline

 

#7 20. 03. 2014 09:32

zdenek1
Administrátor
Místo: Poděbrady
Příspěvky: 12436
Reputace:   897 
Web
 

Re: Elektrina

↑ SoniCorr:
ne
u b) musíš přidat ještě rovnic "síly nahoru = síly dolů", tj.
$(F_{AB}+F_{BD}\sin \alpha )+(F_{CD}+F_{AC}\sin \alpha )=G$


Pořádek je pro blbce, inteligent zvládá chaos!

Offline

 

#8 20. 03. 2014 13:33 — Editoval miso16211 (20. 03. 2014 13:38)

miso16211
Πυθαγόραc
Příspěvky: 1522
Pozice: n/a
 

Re: Elektrina

↑ zdenek1: všechno dobre, ale sa mi zda že máś chybu

tá rovnica $(F_{DC}+\sin \alpha \cdot F_{AC})\cdot \frac{d}{2}+G\cdot (x-\frac{d}2{})=(F_{AB}+F_{DB}\cdot \sin \alpha )\cdot \frac{d}{2}$

pismenka v indexoch som poprehadzoval,

a neviem ci to G nema byt s minuskom.

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson