Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Stránky: 1
Ahoj,
nechť má pravidelný šestiúhelník S stranu délky n a nechť útvar U vznikne spojením dvou rovnostranných trojúhelníků o straně 1, které k sobě přiložíme svými stanami (tj. U je kosočtverec). Nechť pomocí kopií útvaru U vyplníme celý S tak, že kratší úhlopříčka každé
je rovnoběžná s některou stranou S (tj. vrcholy
i vrcholy S leží ve vrcholech trojúhelníkové sítě tvořené rovnostrannými trojúhelníky o straně délky 1). Potom lze tedy množinu všech
rozdělit na tři množiny (A,B,C), podle toho se kterou stranou S je kratší úhlopříčka
rovnoběžná (S má vždy dvě strany rovnoběžné, tedy množiny jsou opravdu tři a nikoli šest). Dokažte, že potom je |A|=|B|=|C|.
Offline
Stránky: 1