Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 23. 03. 2015 11:39

maver
Příspěvky: 216
Reputace:   
 

Lin algebra - permutace

Vůbec nerozumím tomuto zadání:

Kolik konverzí tvoří číslo 1 v permutaci $\Pi (k)=1$

Offline

 

#2 23. 03. 2015 14:57

vanok
Příspěvky: 14606
Reputace:   742 
 

Re: Lin algebra - permutace

Ahoj ↑ maver:,
Daj mi anglicky alebo francuzky nazov tvojho pojmu, a tiez jeho definiciu.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#3 23. 03. 2015 15:06 — Editoval maver (23. 03. 2015 15:07)

maver
Příspěvky: 216
Reputace:   
 

Re: Lin algebra - permutace

↑ vanok:
nerozumím. Jde o permutaci.... mělo by to být "pí"

Offline

 

#4 23. 03. 2015 15:40

vanok
Příspěvky: 14606
Reputace:   742 
 

Re: Lin algebra - permutace

Konverzia
To je kto?co?


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#5 23. 03. 2015 16:14

maver
Příspěvky: 216
Reputace:   
 

Re: Lin algebra - permutace

↑ vanok:
omlouvám se. Mělo to být inverzí (ne konverzí).

Offline

 

#6 23. 03. 2015 16:46

vanok
Příspěvky: 14606
Reputace:   742 
 

Re: Lin algebra - permutace

Pokial nevieme co je $\Pi (k)=1$,tak sa tomu neda rozumiet.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#7 23. 03. 2015 17:24

maver
Příspěvky: 216
Reputace:   
 

Re: Lin algebra - permutace

↑ vanok:
to máme cvičení ze školy.

kolik inverzí tvoří číslo 1 v permutaci $\Pi \in S_{n}$ takové, že $\Pi (k)=1$

Offline

 

#8 23. 03. 2015 17:36

vanok
Příspěvky: 14606
Reputace:   742 
 

Re: Lin algebra - permutace

↑ maver:,
Aha, teraz to rozumiem.
Ide o permutaciu $\Pi \in S_{n}$, taku ze $\Pi (k)=1$.
Ked pouzijes definiciu inverzie jednej permutacie, co som pripomenul v predoslom cviceni, tak odpoved je 0 ( nula).


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#9 23. 03. 2015 20:30

maver
Příspěvky: 216
Reputace:   
 

Re: Lin algebra - permutace

↑ vanok:
Když já nevím, co je to "Sn" a "k".

Offline

 

#10 23. 03. 2015 21:15

vanok
Příspěvky: 14606
Reputace:   742 
 

Re: Lin algebra - permutace

Sn= to je groupa permutacii na mnozine { 1,2,3,...,n}
Je cislo z tej mnoziny
$\Pi (k)=1$ Je obraz 1 cisla k vdaka permutacii z $\Pi \in S_{n}$


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson