Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 01. 11. 2015 10:42

jinsun
Příspěvky: 52
Pozice: student
Reputace:   
 

Limita fce s odmocninou - kontrola výsledku

Zdravím, mám příklad na limitu posloupnosti a chtěl bych poprosit o zkontrolování. Děkuji.
//forum.matweb.cz/upload3/img/2015-11/70915_WP_20151101_001.jpg

Offline

  • (téma jako vyřešené označil(a) jinsun)

#2 01. 11. 2015 10:49 — Editoval Al1 (01. 11. 2015 10:49)

Al1
Příspěvky: 7782
Reputace:   540 
 

Re: Limita fce s odmocninou - kontrola výsledku

↑ jinsun:

Zdravím,

druhý řádek rozšíření zlomku - jmenovatel povede na tvar $(x+\sqrt{1+x^{2}})(x-\sqrt{1+x^{2}})=x^{2}-1-x^{2}$ a jsi tam, kdes byl - na začátku

Proto úprava na začátku druhého řádku bude
$\lim_{x\to\infty }\frac{x}{x+\sqrt{x^{2}(\frac{1}{x^{2}}+1)}}=\lim_{x\to\infty }\frac{x}{x+x\sqrt{\frac{1}{x^{2}}+1}}$

A teď ve jmenovateli vytkni x, pokrať s čitatelem a máš výsledek

Offline

 

#3 01. 11. 2015 10:59

jinsun
Příspěvky: 52
Pozice: student
Reputace:   
 

Re: Limita fce s odmocninou - kontrola výsledku

↑ Al1: tak tohle by mě nenapadlo, děkuji

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson