Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Dobrý den,
mám trošku nejasnost v určování rychlosti růstu.
Když mám tyto dvě posloupnosti: a
tak druhou přepíšu jako:
a tedy
Nyní když porovnám funkce v exponentech, dostávám:
Co mi toto řekne o původních dvou funkcích?
Jak z tohoto výsledku usoudím, že platí a ne třeba
??
je to proto, protože limita vyšla v intervalu (0,1) ?
Takže platí něco jako, že při porovnání exponentů:
posloupnost f(n) roste pomaleji než g(n)
rostou stejně
f(n) roste rychleji než g(n) ??
A kdy tedy bude platit něco na způsob popřípadě
?
Díky, freedy
Offline
Dobře, ale z toho mého tvaru, kde porovnávám exponenty, tak z toho nelze nic určit?
Ono totiž ne vždy je triviální porovnávat ty dvě posloupnosti jako limitu, například zde to ještě jde, ale když mám například a
.)
Mimochodem, jak bych srovnal a
??
Díky
Offline
↑ Freedy:
Pracuješ-li s podílem , pak v případě exponenciálních funkcí bys měl uvedené exponenty odečítat, nikoli dělit, tj. místo limity
by bylo vhodnější počítat limitu
. Tj. posloupnost
je zanedbatetlná ve srovnání s posloupností
Chseš-li srovnat posloupnosti a
, doporučují spočítat limitu
Pomůže Stolzova věta.
Offline
aha, jasnýýý :D díky...
a já se divím, proč mi to tu pořád vychází tak hnusně -.-
Jinak tato limita je jednoduchá, to máš pravdu, dal by se použít i odhad , ne?
Jinak díky za rady.
Freedy
Offline
↑ Freedy:
Odhad je v pořádku, ale v této situaci nedává úplnou odpověď. Pokud bys jej použil, ukázal bys, že
Odtud by mohlo plynout jak , tak i
.
Stolzova věta dává lepší výsledek:
Takže .
Offline
Ano ano, se stolzovou větou souhlasím.
Nicméně, když tedy mám nějaké dvě funkce:
a chci je porovnat, tak zkoumám limitu
a teď rozlišuji: potom
Ano?
Offline