Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Stránky: 1
Due to the erratic behavior of the compilation system on this web, I have prepared the solution in the form of the following LaTeX code. Please, compile the code in your editor (run pdflatex.exe) to produce the appropriate PDF-file or use the online compilation here.
(corrected - May 11, 11:51 a.m.)
\documentclass{article} \usepackage{amsmath,amsfonts} \usepackage{MnSymbol} \def\N{\mathbb N} \def\dx{\textnormal dx} % \thispagestyle{empty} \parindent=0pt % % \begin{document} It is easy to see that \[ \left\{(-1)^{\left\lfloor\frac{1}{x}\right\rfloor}\cdot\frac{1}{x}\right\} =\begin{cases} n-\tfrac{1}{x} & x\in\left (\frac{1}{n},\frac{1}{n-1}\right ),\quad n\in\N ,\text{$n$ even},\\[2mm] \tfrac{1}{x}-(n-1)& x\in\left (\frac{1}{n},\frac{1}{n-1}\right ),\quad n\in\N ,\text{$n$ odd, $n\ge 3$}. \end{cases} \] Therefore, \begin{align*} I&=\int_{0}^{1}\left\{(-1)^{\left\lfloor\frac{1}{x}\right\rfloor}\cdot\frac{1}{x}\right\}\dx\\[2mm] %----- &=\lim_{N\to\infty}\sum_{n=1}^{N}\int_{\frac{1}{n+1}}^{\frac{1}{n}} \left\{(-1)^{\left\lfloor\frac{1}{x}\right\rfloor}\cdot\frac{1}{x}\right\}\dx\\[2mm] %----- &=\lim_{N\to\infty}\left ( \sum_{\substack{n=2\\\text{$n$ even}}}^{2\left\lfloor\frac{N}{2}\right\rfloor} \int_{\frac{1}{n}}^{\frac{1}{n-1}}\left (n-\frac{1}{x}\right )\dx % +\sum_{\substack{n=3\\\text{$n$ odd}}}^{2\left\lfloor\frac{N-1}{2}\right\rfloor +1} \int_{\frac{1}{n}}^{\frac{1}{n-1}}\left (\frac{1}{x}-(n-1)\right )\dx \right )\\[2mm] %----- &=\lim_{N\to\infty}\left ( \sum_{\substack{n=2\\\text{$n$ even}}}^{2\left\lfloor\frac{N}{2}\right\rfloor} \bigl [nx-\ln (x)\bigr ]_{\frac{1}{n}}^{\frac{1}{n-1}} % +\sum_{\substack{n=3\\\text{$n$ odd}}}^{2\left\lfloor\frac{N-1}{2}\right\rfloor +1} \bigl [\ln (x)-(n-1)x\bigr ]_{\frac{1}{n}}^{\frac{1}{n-1}} \right )\\[2mm] %----- &=\lim_{N\to\infty}\left ( \sum_{\substack{n=2\\\text{$n$ even}}}^{2\left\lfloor\frac{N}{2}\right\rfloor} \left (\frac{1}{n-1}-\ln\left (\frac{n}{n-1}\right )\right ) % +\sum_{\substack{n=3\\\text{$n$ odd}}}^{2\left\lfloor\frac{N-1}{2}\right\rfloor +1} \left (\ln\left (\frac{n}{n-1}\right )-\frac{1}{n}\right ) \right )\\[2mm] %----- &=\lim_{N\to\infty}\left ( \sum_{\substack{n=2\\\text{$n$ even}}}^{2\left\lfloor\frac{N}{2}\right\rfloor}\frac{1}{n-1} -\sum_{\substack{n=3\\\text{$n$ odd}}}^{2\left\lfloor\frac{N-1}{2}\right\rfloor +1}\frac{1}{n} \right ) % +\lim_{N\to\infty}\left ( \sum_{\substack{n=2\\\text{$n$ even}}}^{2\left\lfloor\frac{N}{2}\right\rfloor}\ln\left (\frac{n-1}{n}\right ) +\sum_{\substack{n=3\\\text{$n$ odd}}}^{2\left\lfloor\frac{N-1}{2}\right\rfloor +1}\ln\left (\frac{n}{n-1}\right ) \right )\\[2mm] %----- &=1 +\lim_{N\to\infty} \ln\left ( \prod_{n=1}^{\left\lfloor\frac{N}{2}\right\rfloor}\frac{2n-1}{2n}\cdot \prod_{n=1}^{\left\lfloor\frac{N-1}{2}\right\rfloor}\frac{2n+1}{2n} \right )\\[2mm] %----- &=1 +\lim_{N\to\infty} \ln\left ( \prod_{n=1}^{\left\lfloor\frac{N}{2}\right\rfloor}\frac{(2n-1)(2n+1)}{(2n)^2}\right )\\[2mm] %----- &=1+\ln\left (\frac{2}{\pi}\right ), %----- \end{align*} where we used the well-known Wallis' product. \end{document}
To editors: Feel free to edit the source code and to retype it in a way that enables the compilation with the system used on this forum.
Offline
Thanks ↑ Marian:
Offline
Stránky: 1