Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 30. 06. 2020 16:07

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Systém diferenciálních rovnic

Ahoj všichni,

Najděte všechna řešení systému diferenciálních rovnic

$\begin{cases}|f(x)-3g'(x)|=x^2-3 \\|3g(x)-f'(x)|=3-x^2 \end{cases} $

Vše nejlepší,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#2 30. 06. 2020 16:30

Ferdish
Zablokovaný
Příspěvky: 4173
Škola: PF UPJŠ (2013), ÚEF SAV (2017)
Pozice: vedecký pracovník
Reputace:   81 
 

Re: Systém diferenciálních rovnic

Listen to me, my friend.

It is apparent that your mother tongue is not Czech nor Slovak and your communication via translator does not seem to work very well. Otherwise you would already understand what we were trying to tell you.

It is essential for you to understand how the things work around here. First, it is convenient to read through our forum rules. Unfortunately I have no knowledge about our rules being available in other than Czech language. No wonder - 99% of active members here are Czechs or Slovaks or at least Czech/Slovak fluent speakers so there was no need for variations in other languages. If you want I can translate them for you (much better than the software you use for translation - believe that).

I hope you understand this text, since I am not sure if you speak English at all...

Offline

 

#3 30. 06. 2020 16:52

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

Ferdish napsal(a):

Listen to me, my friend.

It is apparent that your mother tongue is not Czech nor Slovak and your communication via translator does not seem to work very well. Otherwise you would already understand what we were trying to tell you.

It is essential for you to understand how the things work around here. First, it is convenient to read through our forum rules. Unfortunately I have no knowledge about our rules being available in other than Czech language. No wonder - 99% of active members here are Czechs or Slovaks or at least Czech/Slovak fluent speakers so there was no need for variations in other languages. If you want I can translate them for you (much better than the software you use for translation - believe that).

I hope you understand this text, since I am not sure if you speak English at all...

I understood!I'm very sorry to bother you, but I want to understand math as well as possible ... Thank you very much for your understanding!

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#4 01. 07. 2020 17:15

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

Hello all,

No one is answering?The proposed problem may seem strange, but I think it has a simple solution, because it requires solving a system of differential equations with modules ...

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#5 02. 07. 2020 06:56 — Editoval jarrro (02. 07. 2020 06:56)

jarrro
Příspěvky: 5406
Škola: UMB BB Matematická analýza
Reputace:   303 
Web
 

Re: Systém diferenciálních rovnic

since $x^2-3=-\(3-x^2\)$ the given system can be satisfied if and only if $x^2-3=0$ which satisfy only two numbers x.
Diffferential equation and their systems should be satisfied on some nondegenerated opn interval. So this system cannot be satisfied.
I hope I dont male a mistake.


MATH IS THE BEST!!!

Offline

 

#6 02. 07. 2020 13:46 — Editoval krakonoš (02. 07. 2020 13:55) Příspěvek uživatele krakonoš byl skryt uživatelem jelena. Důvod: OT, viz samostatné téma

#7 02. 07. 2020 16:39

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

Hello ↑ jarrro:

I think we should start from the definition of the module ...

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#8 02. 07. 2020 16:59 — Editoval vanok (02. 07. 2020 17:00) Příspěvek uživatele vanok byl skryt uživatelem jelena. Důvod: OT, viz samostatné téma

#9 02. 07. 2020 17:52 — Editoval krakonoš (02. 07. 2020 17:52) Příspěvek uživatele krakonoš byl skryt uživatelem jelena. Důvod: OT, viz samostatné téma

#10 02. 07. 2020 22:58 — Editoval vanok (02. 07. 2020 23:01) Příspěvek uživatele vanok byl skryt uživatelem jelena. Důvod: OT, viz samostatné téma

#11 02. 07. 2020 23:27 — Editoval misaH (02. 07. 2020 23:29) Příspěvek uživatele misaH byl skryt uživatelem jelena. Důvod: OT, viz samostatné téma

#12 02. 07. 2020 23:43 Příspěvek uživatele Ferdish byl skryt uživatelem jelena. Důvod: OT, viz samostatné téma

#13 03. 07. 2020 07:37 — Editoval krakonoš (03. 07. 2020 07:38) Příspěvek uživatele krakonoš byl skryt uživatelem jelena. Důvod: OT, viz samostatné téma

#14 03. 07. 2020 10:18

jelena
Jelena
Místo: Opava
Příspěvky: 30020
Škola: MITHT (abs. 1986)
Pozice: plním požadavky ostatních
Reputace:   100 
 

Re: Systém diferenciálních rovnic

Zdravím, OT debata o národních matematických fórech je oddělena do samostatného tématu, dle zájmu pokračujte, prosím, v tématu, nebo si založte vlastní v příslušné sekci. Děkuji.

Offline

 

#15 07. 07. 2020 18:10

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

Hello all,

I think we should start from the definition of the module ...

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#16 07. 07. 2020 20:11

vlado_bb
Moderátor
Příspěvky: 5886
Škola:
Reputace:   133 
 

Re: Systém diferenciálních rovnic

↑ Dacu: Why? The problem has been solved by ↑ jarrro:

Offline

 

#17 08. 07. 2020 09:30 — Editoval Dacu (08. 07. 2020 13:44)

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

vlado_bb napsal(a):

↑ Dacu: Why? The problem has been solved by ↑ jarrro:

Hello,

From $ x ^ 2-3 = 0 $ results $ x = \mp \sqrt{3} $ and so what are the values of the functions $ f (x) $ and $ g (x) $ for $ x = \mp \sqrt{3} $?
Thank you very much!

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#18 08. 07. 2020 09:36

vlado_bb
Moderátor
Příspěvky: 5886
Škola:
Reputace:   133 
 

Re: Systém diferenciálních rovnic

↑ Dacu:Such functions do not exist (see the solution by ↑ jarrro:).

Offline

 

#19 08. 07. 2020 11:02 — Editoval misaH (08. 07. 2020 11:03)

misaH
Příspěvky: 12971
 

Re: Systém diferenciálních rovnic

$ x = \mp\sqrt 3 $

But see what did vlado_bb write.

Offline

 

#20 08. 07. 2020 13:14

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

misaH napsal(a):

$ x = \mp\sqrt 3 $.

Hello,

Thousands of apologies!I corrected!Thank you very, very much!

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#21 08. 07. 2020 13:42

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

vlado_bb napsal(a):

↑ Dacu:Such functions do not exist (see the solution by ↑ jarrro:).

I think that one solution could be $f(x) = \frac{1}{2} c_1 e^{-x} (e^{2 x} + 1) + \frac{3}{2} c_2 e^{-x} (e^{2 x} - 1) + x^2 + 2 x - 1$ and $g(x) = \frac{1}{6} c_1 e^{-x} (e^{2 x} - 1) + \frac{1}{2} c_2 e^{-x} (e^{2 x} + 1) + \frac{1}{3} (x^2 + 2 x - 1)$.
Please kindly prove to me that the above solution is not correct!Thank you very much!

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#22 08. 07. 2020 16:18

Bati
Příspěvky: 2375
Reputace:   187 
 

Re: Systém diferenciálních rovnic

↑ Dacu:
Let $c_1=c_2=0$. Then $f(x)-3g'(x)=0$ for all $x\in\mathbb{R}$, but $x^2-3=0$ only if $x=3$ or $x=-3$.

Offline

 

#23 08. 07. 2020 17:48

vlado_bb
Moderátor
Příspěvky: 5886
Škola:
Reputace:   133 
 

Re: Systém diferenciálních rovnic

↑ Dacu:The proof that your solution is wrong has already been done by ↑ jarrro:. Don't you understand his proof?

Offline

 

#24 10. 07. 2020 06:07 — Editoval Dacu (10. 07. 2020 06:18)

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

Bati napsal(a):

↑ Dacu:
Let $c_1=c_2=0$. Then $f(x)-3g'(x)=0$ for all $x\in\mathbb{R}$, but $x^2-3=0$ only if $x=3$ or $x=-3$.

Hello,

I think you meant that $x=\mp \sqrt{3}$...What other values ​​can $c_1$ and $c_2$ take and so what are all the solutions of  nonlinear system of the differential equations?Thank you very much!

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

#25 10. 07. 2020 06:15 — Editoval Dacu (10. 07. 2020 06:18)

Dacu
Příspěvky: 65
Pozice: inženýr
Reputace:   
 

Re: Systém diferenciálních rovnic

vlado_bb napsal(a):

↑ Dacu:The proof that your solution is wrong has already been done by ↑ jarrro:. Don't you understand his proof?

Hello,

Bati has a different opinion ... Is it wrong what Bati says?!?!Thank you very much!

From the "WolframAlpha" reading:

Odkaz.

All the best,

Dacu


"Don't worry about your difficulties to math.I assure you that mine are even bigger! ” Albert Einstein

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson