Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Ahoj,
napadla mě tato úloha: Mějme pevný interval I a hledáme taková čísla x1,x2,.. z tohoto intervalu taková, že pro všechna i z {1,2,..,n} pokud I rozdělíme na i stejně dlouhých intervalů, se bude v každém takovém intervalu nacházet právě jeden z bodů x1,..,xi. A hledáme taková čísla xi (resp. stačí dokázat že existují), aby číslo n bylo co největší - nebo dokonce "nekonečné".
Offline
Ahoj,
Skusal si prest zo situacii n na situaciu n+2?
A preco si zaradil tuto konjekturu do matematikych struktur?
Offline
Ahoj,
je to struktura reálných čísel, přišla mi to nejvhodnější kategorie. Ale dalo by se to zařadit i do analýzy, diskrétní matematiky i algebry. :-)
Offline
↑ check_drummer:
Ahoj, ja bych rekl, ze kdyz si zvolis libovolne n, rozdelis interval I na n stejne velkych intervalu (=deleni Dn) a jako xi vezmes stredy techto n intervalu, tak ziskas body s pozadovanou vlastnosti. Tj, pro vsechna m<n obsahuje kazdy z intervalu deleni Dm alespon jeden bod xi.
EDIT: Zkusil jsem si to nakreslit pro mala n a bohuzel to takto nebude fungovat. Ale aspon to tu necham jako neuspesny pokus. :)
Offline
↑ vanok:
Ahoj, spíáš bych řekl, že lepší cesta bude od n k 2n, ale konkrétní řešení nemám.
Offline
↑ check_drummer:
Asi to nějak nechápu, protože se mi to zdá elementární.
Interval <a;b>, takže pro libovolné přirozené n je xi = a+(i-1)*(b-a)/n+(b-a)/2/n; i=1;2;...;n.
Pokud je vždy n=2^k, můžeš jít k nekonečnu. Pak je n=2^AlefNula=kontinuum a množina čísel x je nespočetná, protože vyplní celý interval <a;b>.
Offline
↑ MichalAld:
Ahoj, na "i", ovšem pro všechna "i" od 1 až po n.
Offline
↑ Eratosthenes:
Ahoj, to podle mě nezafunguje. Pro obrovské n ti např. pro i=3 nepadne x3 do třetí třetiny intervalu I.
Offline