Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 15. 11. 2022 17:22

Danielz
Zelenáč
Příspěvky: 13
Reputace:   
 

Goniometrie úhel dopadu

Dobrý den, potřeboval bych poradit s tim nevim jak na to.
Předem děkuji za odpověď


Jaký je úhel dopadu paprsku, který projde bodem A a po odrazu od zrcadla projde bodem B? Bod A je ve vzdálenosti 20 cm od zrcadla a bod B ve vzdálenosti 50 cm od zrcadla. Vzdálenost |AB| = 70 cm. (Pozn.: úhel dopadu paprsku je úhel mezi kolmicí dopadu a dopadajícím paprskem.)

Offline

 

#2 15. 11. 2022 18:43

Mirek2
Příspěvky: 1195
 

Re: Goniometrie úhel dopadu

Dobrý den,

to vypadá na podobnost trojúhelníků a Pythagorovu větu.

Základem úspěchu bude náčrt a označit si neznámé úsečky písmeny - zdá se, že jsou čtyři, přičemž pomocí podobnosti lze získat dvě rovnice (vztahy), z Pythagorovy věty další dvě nebo tři.

Tak napište, jak to jde...

Offline

 

#3 15. 11. 2022 19:02 — Editoval Mirek2 (15. 11. 2022 19:02)

Mirek2
Příspěvky: 1195
 

Re: Goniometrie úhel dopadu

Teď vidím, že stačí jedna Pythagorova věta.

Body A, B můžeme vést kolmice k zrcadlu, paty kolmic označím A1, B1.
Hledáme bod D dopadu paprsku (je někde mezi A1 a B1). Vzdálenosti bodu D od bodů A1, B1 si můžeme označit x, y.

Z podobnosti trojúhelníků najdeme vztah mezi x, y.

Druhou rovnici s neznámými x, y sestavíme podle Pythagorovy věty z trojúhelníku ABP, kde P je pata kolmice z bodu A k úsečce B-B1.

Offline

 

#4 16. 11. 2022 12:59

Danielz
Zelenáč
Příspěvky: 13
Reputace:   
 

Re: Goniometrie úhel dopadu

↑ Mirek2: děkuji ale stejně moc nerozumim asi jsem marný (

Offline

 

#5 16. 11. 2022 14:58 — Editoval Al1 (16. 11. 2022 14:59)

Al1
Příspěvky: 7782
Reputace:   540 
 

Re: Goniometrie úhel dopadu

↑ Danielz:
Zdravím,

obrázek
https://ctrlv.cz/CYGi

A teď postupuj dle rad kolegy Mirek2:

1. Z podobnosti trojúhelníků  [mathjax]AA_{1}D[/mathjax][mathjax]BB_{1}D[/mathjax] najdeme vztah mezi x, y. ..... např. [mathjax]\frac{x}{20}=\frac{y}{?}[/mathjax]
2. Druhou rovnici s neznámými x, y sestavíme podle Pythagorovy věty z trojúhelníku ABP
3. Vyřešíš jednoduchou soustavu pro neznámé x a y
4. /hel zjistíš pomocí vhodné goniometrické fce např. z trojúhelníku [mathjax]AA_{1}D[/mathjax]

Offline

 

#6 16. 11. 2022 18:37

Danielz
Zelenáč
Příspěvky: 13
Reputace:   
 

Re: Goniometrie úhel dopadu

↑ Al1:vyšlo  mi 48° alfa

Offline

 

#7 16. 11. 2022 19:37

Al1
Příspěvky: 7782
Reputace:   540 
 

Re: Goniometrie úhel dopadu

↑ Danielz:
Se zaokrouhlením ano. 👍

Offline

 

#8 16. 11. 2022 19:51

Danielz
Zelenáč
Příspěvky: 13
Reputace:   
 

Re: Goniometrie úhel dopadu

↑ Al1:hm no ale mě píše ze správná odpověď má být 42°?

Offline

 

#9 16. 11. 2022 19:53

Danielz
Zelenáč
Příspěvky: 13
Reputace:   
 

Re: Goniometrie úhel dopadu

↑ Danielz:kde mám chybu?

Offline

 

#10 16. 11. 2022 20:05

Danielz
Zelenáč
Příspěvky: 13
Reputace:   
 

Re: Goniometrie úhel dopadu

Offline

 

#11 16. 11. 2022 20:06 — Editoval Al1 (16. 11. 2022 20:11)

Al1
Příspěvky: 7782
Reputace:   540 
 

Re: Goniometrie úhel dopadu

↑ Danielz:
Nemáš chybu, jen si přečti, jak je v zadání označen úhel dopadu - úhel dopadu paprsku je úhel mezi kolmicí dopadu a dopadajícím paprskem. Takže ty jsi spočítal úhel u vrcholu D v trojúhelníku[mathjax]AA_{1}D[/mathjax]. Teď ho stačí dopočítat do 90°. V bodě D veď kolmici k [mathjax]A_{1}B_{1}[/mathjax].

Offline

 

#12 16. 11. 2022 20:07 — Editoval Al1 (16. 11. 2022 20:09)

Al1
Příspěvky: 7782
Reputace:   540 
 

Re: Goniometrie úhel dopadu

Stejný text, nevím, proč se odeslal 2x.

Offline

 

#13 16. 11. 2022 20:17 Příspěvek uživatele Danielz byl skryt uživatelem Danielz.

#14 16. 11. 2022 20:19

Al1
Příspěvky: 7782
Reputace:   540 
 

Re: Goniometrie úhel dopadu

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson