Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Ahojte,
v prípade že máme 10 meraní dĺžky
12,6 m
12,6 m
12,7 m
12,5 m
12,6 m
12,8 m
12,6 m
12,5 m
12,4 m
12,6 m
A potrebujeme ho vyhodnotiť klasicky stredoškolsky a zapísať v tvare [mathjax]d=(\overline{d}+\triangle d), \delta d[/mathjax]
(počítame teda klasickú priemernú odchýlku, žiadnu smerodajnú ani iné zložité) a dostaneme [mathjax]\overline{d}=12,59 m[/mathjax] a [mathjax]\triangle d=0,074m[/mathjax] ako to potom zaokrúhliť? na taký počet platných miest, ako majú vstupné údaje, teda d = (12,6 +- 0,1) m alebo o jedno platné miesto viac teda d = (12,59 +- 0,07)m ?
Ďakujem
Offline
Ahoj,
učebnice Přehled středoškolské fyziky (Prometheus, 2006) uvádí:
Chybu výsledku (např. směrodatnou odchylku) zaokrouhlujeme na jedno, nejvýše na dvě platné místa. Pokud je tento výsledek konečný, omezujeme se na jedno platné místo. Provádíme-li s ním další výpočty, je lepší uvádět dvě platná místa.
Aritmetický průměr pak zaokrouhlíme na číslici téhož řádu, jako je nejnižší platné místo chyby.
Je tam i podobný příklad, výsledek by podle toho byl (12,1 +- 0,1) m.
Offline
Ve VŠ učebnici (1971) se píše totéž - střední chybu aritmetického průměru uvažujeme jen s první nenulovou číslicí desetinného místa.
Aritmetický průměr zaokrouhlíme podle toho.
Offline
Na druhou stranu - pokud uděláme průměr z N měření, tak náhodná chyba měření se sníží [mathjax]\sqrt{N} \times[/mathjax]. Pokud máme tedy 100 hodnot s přesností na jedno desetinné místo, má celkem smysl ten průměr udávat na dvě desetiná místa. Protože když rozptyl těch původních čísel bude třeba plus minus dvě desetiny, tak rozptyl toho průměru (ze sta hodnot) bude plus minus dvě setiny.
Offline
Ale jinak souhlas, že velikost chyby má za běžných podmínek smysl udávat na jednu platnou číslici. Jen by asi bylo (podle mě) dobré to zaokrouhlovat spíš nahoru, než dolů. Ale udávat něco jako 12.87 +- 0.0725 je asi blbost. To bychom za chvíli mohli mluvit o tom, s jakou chybou je stanovena ta chyba...
Offline