Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
Zdravím,
nemůžu přijít na to, jak se dostat k výsledkům, které uvádí učebnice. Přijde mi, že žena by měla urazit pouze 1L, neboť deska má rychlost 2krát větší, než střed sudu (aby styčný bod deska-sud neprokluzoval). Proto tedy když sud urazí L/2, tak deska plus žena 2krát L/2, takže L.
Ale zase chápu, že na začátku byla žena ve vzdálenosti L od sudu, a na konci 0. Proto urazila L + L/2.
Zkrátka nevím si rady. Je tady nějaký profík, který by byl ochotný mi poradit?
Předem děkuji za přečtení.
Offline
↑ Papaya34:
Ahoj, takže z odpovědi (a) plyne odpověď (b), takže stačí vyřešit (a), je to tak?
Offline
↑ Papaya34:
Je potřeba zdůvodnit proč mají body na horní část sudu rychlost dvakrát větší (ve směru pohybu) než bod ve středu sudu.
Offline
↑ check_drummer: Sud koná dva typy pohybu zároveň - posuvný (translace) a otáčivý (rotace). Posuvný proto, že sud jako celek se přemístil - o vzdálenost L/2. Jenže místo toho, aby po podlaze klouzal (třel o ni), tak se po ní valil. Tzn. body sudu mají posuvný vektor rychlosti (konstantní co do směru i velikosti) a rotační vektor rychlosti (konstantní velikost, směr proměnný). Výsledný vektor rychlosti vznikne součtem posuvného a rotačního vektoru.
Valení bez prokluzu vznikne tehdy, když posuvný a rotační vektor bodů na okraji sudu mají stejnou velikost. Pro bod, který je v daném okamžiku ve styku s podlahou se vektory odečtou (výsledný vektor rychlosti je 0) a pro bod, který je na opačné straně (v nejvyšším místě) se sečtou (velikost výsledného vektoru je dvojnásobná).
Co se týče výsledku, možná je potřeba uvážit, že posun desky se vztahuje ne k zemi, ale k sudu. Potom deska urazila 2*L/2 vůči sudu a sud L/2 vůči zemi. Takže po součtu vyjde, že deska urazila 3/2L vůči zemi.
Nejsem si ovšem jistý.
Offline
↑ Papaya34:
Akorát otázka nezní kolik urazila vzhledem k zemi, ale vzhledem k sudu (přesněji jak dlouhá část přišla do styku se sudem).
Offline
↑ check_drummer: Ano, první otázka se vztahovala na posun desky vůči sudu. Výsledek tohoto posunu je L/2*2 = L (protože deska a bod sudu ve styku s deskou mají 2násobnou rychlost než střed sudu, proto se posunou o dvojnásobek toho co střed).
Ale ta druhá otázka se ptá na posun té ženy. A tady (hádám) je potřeba uvažovat, že výsledný posun ženy vůči zemi je posun L desky + posun L/2 sudu.
Offline
↑ Papaya34:
Pokud skladnice s prknem urazí dráhu x vzhledem k zemi, sud urazí dráhu x/2 vzhledem k zemi (posuvný pohyb).
Prkno urazí dráhu x/2 vzhledem k sudu.
Myslím, že by to již mělo být jasné.
P.S. Není problém to pokusně vyzkoušet.
Offline
↑ Richard Tuček: Jenže v odpovědi stojí, že skladnice urazila 1,5L. Vaše odpověď (pokud jsem to správně pochopil) říká, že pokud se sud posune o L/2 vůči zemi, tak skladnice se posune o L vůči zemi, což je ovšem jiná (podle učebnice nesprávná) odpověď.
Offline