Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 06. 02. 2008 21:20 — Editoval nubijska princess (06. 02. 2008 21:37)

nubijska princess
Místo: Zlín
Příspěvky: 67
Reputace:   
 

racionalni ryze lomena funkce

Muze mi prosim Vas nekdo poradit? DEKUJI

Zvolte v integralu 2/(x^2+bx+4)dx koeficienty b a c tak, aby se ve vysledku objevila racionalni ryze lomena fce?

za b dosadim -2 a za c 1

Offline

 

#2 06. 02. 2008 21:31

Marian
Místo: Mosty u Jablunkova
Příspěvky: 2512
Škola: OU
Pozice: OA, VSB-TUO
Reputace:   67 
 

Re: racionalni ryze lomena funkce

Nevidim parametr "c", tudiz tezkou soudit, jak jsi to myslela s tvou volbou parametru "b". A dopln si tam zavorky. Je to chaoticke a nejednoznacne!

Offline

 

#3 06. 02. 2008 21:39

nubijska princess
Místo: Zlín
Příspěvky: 67
Reputace:   
 

Re: racionalni ryze lomena funkce

↑ Marian: ta puvodni 4 v zadani je myslena jako parametr c

Offline

 

#4 06. 02. 2008 21:47

jelena
Jelena
Místo: Opava
Příspěvky: 30020
Škola: MITHT (abs. 1986)
Pozice: plním požadavky ostatních
Reputace:   100 
 

Re: racionalni ryze lomena funkce

↑ nubijska princess:

puvodne v zadani bylo c a ty navrhujes 4? Nebo puvodne v zadani bylo 4 na pozici pro c?

Myslim, ze ucelem je navrhnout takovy zapis, aby se dal upravit na (x+cislo)^2, pak se muze byt pouzita substituce (x+cislo)=t   

↑ Marian:   

Vyuzivam moznost moc pozdravit Mariana, v posledni dobe na nas dohlizis trochu mene :-(

Offline

 

#5 06. 02. 2008 21:52 — Editoval nubijska princess (06. 02. 2008 21:53)

nubijska princess
Místo: Zlín
Příspěvky: 67
Reputace:   
 

Re: racionalni ryze lomena funkce

↑ jelena: v puvodnim zadani je na pozici c cislo 4,  poprve jsem navrhovala za koeficient b dostadit cislo 4 a ten puvodni c tam ponechat tak, jak je. Kolega mi rika, ze se v zadani vyskytuje chyba, ma se dosazovat tedy jen za paramet "b"

Offline

 

#6 06. 02. 2008 21:55 — Editoval jelena (06. 02. 2008 22:00)

jelena
Jelena
Místo: Opava
Příspěvky: 30020
Škola: MITHT (abs. 1986)
Pozice: plním požadavky ostatních
Reputace:   100 
 

Re: racionalni ryze lomena funkce

↑ nubijska princess:

tak pak je tak, jak navrhujes, vlasne se shodneme

  2/(x^2+4x+4) = 2/(x+2)^2   

2 v citateli nema vliv - je to konstanta, ktera pujde pred integral.

Offline

 

#7 07. 02. 2008 15:26

Marian
Místo: Mosty u Jablunkova
Příspěvky: 2512
Škola: OU
Pozice: OA, VSB-TUO
Reputace:   67 
 

Re: racionalni ryze lomena funkce

↑ jelena:
No jo, studuju tvoreni vektorove grafiky v PostScriptu a porovnavam to trochu s Metapostem, do toho jeste namicham TeX, takze casto pracuju i celou noc, ale cas od casu sem kouknu. Vicemene cekam na nejaky zajimavy priklad, nejvice na takovy, kde jde o nekonecne rady. Zatim nic ...

Jinak take zdravim.

Offline

 

#8 07. 02. 2008 16:17

jelena
Jelena
Místo: Opava
Příspěvky: 30020
Škola: MITHT (abs. 1986)
Pozice: plním požadavky ostatních
Reputace:   100 
 

Re: racionalni ryze lomena funkce

↑ Marian: 

muj obdiv a trochu i zavidim - takove hezke veci a v takovy krasny cas :-)

Tak at se dari :-)

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson