Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 11. 07. 2013 13:48

check_drummer
Příspěvky: 4745
Reputace:   105 
 

Teorie množin - výzkum jedné "množiny"

Ahoj,
lze prostředky teorie množin (např. ZFC) ukázat, že existuje množina $x$ s vlastností $x = \{x\}$? Nebo obecněji (speciálněji): lze prostředky teorie množin ukázat, že existuje množina $x$ s vlastností $x \in x$?
Děkuji


"Máte úhel beta." "No to nemám."

Offline

 

#2 11. 07. 2013 14:34 — Editoval Mihulik (11. 07. 2013 14:35)

Mihulik
Příspěvky: 175
Škola: MFF UK - Matematická analýza, Nav. Mag.
Pozice: student
Reputace:   
 

Re: Teorie množin - výzkum jedné "množiny"

Ahoj,
doufám, že dobře chápu dotaz, ale pokud se nepletu, tak "existenci" množiny $x$ takové, že $x\in x$, zabraňuje axiom regularity, ne?:)

Offline

 

#3 11. 07. 2013 14:36 — Editoval Pavel Brožek (11. 07. 2013 14:42)

Pavel Brožek
Místo: Praha
Příspěvky: 5694
Škola: Informatika na MFF UK
Pozice: Student
Reputace:   194 
 

Re: Teorie množin - výzkum jedné "množiny"

Ahoj, já myslím, že naopak lze ukázat, že taková množina neexistuje. Předpokládejme, že existuje množina $x$ taková, že $x\in x$. Podle axiomu dvojice je $\{x,\{x\}\}$ množina a je jistě neprázdná (obsahuje $x$). Podle axiomu fundovanosti

$(\forall a)(a\neq 0\rightarrow (\exists b)(b\in a\wedge b\cap a = 0))$

tedy

$(\exists b)(b\in \{x,\{x\}\}\wedge b\cap \{x,\{x\}\} = 0).$

Množina $\{x,\{x\}\}$ má maximálně dva různé prvky $x$ a $\{x\}$. Pokud $b=x$, pak $b\cap \{x,\{x\}\}=x\cap \{x,\{x\}\}$. Ale $x$ patří jak do $x$ tak do $\{x,\{x\}\}$, patří tedy i do průniku a průnik je tak neprázdná množina. Kdyby $b=\{x\}$, tak $b\cap \{x,\{x\}\}=\{x\}\cap \{x,\{x\}\}$. A opět, $x$ patří do obou množin v průniku, takže je průnik neprázdná množina. To je spor s axiomem fundovanosti.

Edit: Na wikipedii se o tom také píše.

Offline

 

#4 11. 07. 2013 20:26

check_drummer
Příspěvky: 4745
Reputace:   105 
 

Re: Teorie množin - výzkum jedné "množiny"

↑ Pavel Brožek:
Děkuji. Podobně by nejspíš bylo možné dokázat i to, že neexistuje "řetězec" $x \in y \in x$, apod.


"Máte úhel beta." "No to nemám."

Offline

 

#5 11. 07. 2013 22:02

vanok
Příspěvky: 14527
Reputace:   742 
 

Re: Teorie množin - výzkum jedné "množiny"

Pozdravujem. 
Pozri sa na NF ( new fundations), uvidis ze tvoj vzorec ma v nej zmysel. 
Pozor, ide o teoriu mnozin, co sa chova inac ako ZF.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson