Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.
Nástěnka
❗22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
❗04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
❗23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.
Nejste přihlášen(a). Přihlásit
↑↑ check_drummer:
Samozřejmě, že (zcela formálně vzato) i ta Pythagorova věta by měla být "obalena" obecným kvantifikátorem. Všeobecně se ale předpokládá, že matematická věta platí vždycky, jinak by celá matematika ztratila smysl. Takže i když v obecných větách ten kvantifikátor explicitně není, mčky se tam předpokládá, tj. je to jakýsi
"metakvantifikátor " :-)
Jinak - tabulka pravdivostních hodnot není opravdu nic víc, než jakýsi stručný dohodnutý zápis vyplývající z odvozovacích pravidel.
Offline
↑↑ Eratosthenes:
Len drobnosť.
c je prepona, ináč tá druhá časť nie je pravda...
Offline
↑ Eratosthenes:
Já bych řekl, že Pythagorova věta je regulérní tvrzení s obecným kvantifikátorem - pro každý trojúhelník platí, že ....
Mnoho vět je ve skutečnosti tvrzením s obecným kvantifikátorem, začínají např. obratem "nechť T je trojúhelník ..." nebo "mějme trojúhelník T ...", apod. Dokonce se v logice dokazuje, že tvrzení s volnou proměnnou je ekvivalentní tvrzení, kdy tuto volnou proměnnou kvantifikujeme obecným kvantifikátorem.
Některá tvrzení nejsou tvrzeními s obecným kvantifikátorem, ale ty s tím obecným jsou nejběžnější.
Jsou i tvrzení s existenčními kvantifikátory a nebo s žádnými, např. popisujícími nějakou vlastnost konkrétního objektu - i když i tuto vlastnost lze někdy formulovat jako obecný nebo existenční výrok.
Např. "3+2=5".
Offline
↑ check_drummer:
>>> Dokonce se v logice dokazuje, že tvrzení s volnou proměnnou je ekvivalentní tvrzení, kdy tuto volnou proměnnou kvantifikujeme obecným kvantifikátorem.
No to je právě ono. Ty to bereš jako obecný kvantifikátor:
Pro každý trojúhelník platí....
a já jako volnou proměnnou:
Nechť ABC je trojúhelník. Jestliže je pravoúhlý...
Jestliže ABC je pravoúhlý...
I tady stačí jeden jediný, pro kterývěta neplatí, a věta má utrum.
Řeknu:
==============
jestliže
[mathjax]\huge\frac a {b+c} + \frac b {c+a} + \frac c {a+b} = 4 [/mathjax]
pak
[mathjax]\huge a;b;c \not\in \mathbb{N}[/mathjax]
==============
je jasné, že pro všechna přirozená čísla a,b,c musí platit
[mathjax]\huge\frac a {b+c} + \frac b {c+a} + \frac c {a+b} \not = 4 [/mathjax]
a že stačí najít jednu jedinou trojici přirozených čísel, která rovnost splňuje, a implikace je nepravdivá.
Takže ty kvantifikátory nemusím sázet nijak asutomaticky.
Offline
Ještě by mě třeba zajímalo, když nějaká implikace NEPLATÍ, tak to znamená, že v té pravdivostní tabulce bude jako výsledek vždycky nula, nebo tam může být cokoliv ?
Nebo je jiná tabulka když řeknu "tvrzení neplatí" a jiná když řeknu "tvrzení obecně neplatí" ?
Offline
↑ MichalAld:
Implikace A=>B neplatí jen v případě, že A=1 a B=0. Takže pro jakoukoliv jinou kombinaci hodnot A,B dostaneš v tabulce u implikace hodnotu 1. Hovořím řečí tabulek.
Ale úplně nerozumím na co se ptáš - když nějaký výrok (ať už je to implikace nebo cokoli jiného) neplatí, tak v té tabulce bude u něj hodnota 0, když platí, je u něj hodnota 1.
Offline
MichalAld napsal(a):
Ještě by mě třeba zajímalo, když nějaká implikace NEPLATÍ, tak to znamená, že v té pravdivostní tabulce bude jako výsledek vždycky nula, nebo tam může být cokoliv ?
p q p => q
1 1 1 ("implikace platí")
1 0 0 ("implikace neplatí")
0 1 1 ("implikace platí")
0 0 1 ("implikace platí")
MichalAld napsal(a):
Nebo je jiná tabulka když řeknu "tvrzení neplatí" a jiná když řeknu "tvrzení obecně neplatí" ?
Zdá se mi, že si pleteš dohromady celkem tři věci:
1) Individuální výroky
2) Logiku prvního řádu - díky ↑ check_drummer: - opravuji nultého řádu
3) Logiku druhého řádu - díky ↑ check_drummer: - opravuji prvního řádu
1) Individuální výrok je to nejjednodušší sdělení, o kterém má smysl rozhodovat, zda je to pravda, anebo ne. Prší. Čislo pět je prvočíslo. To nerozhodneš žádnou tabulkou. Je to sémantická záležitost, na které se musíš buď dohodnout (jestli sem tam ta kapka, které spadne, už je déšť), anebo dokázat použitím prostředků, které jsou mimo logiku (na pojmy "číslo" a "prvočíslo" logika sama nestačí).
2) Logika nultého řádu (opraveno ↑ check_drummer: ) : je logika složených výroků, tj. dvou, anebo více individuálních výroků spojených logickými spojkami. Tam už tě nezajímá obsah individuálních výroků. Musíš o nich vědět jenom to, zda jsou pravdivé, anebo nepravdivé. A pak můžeš o pravdivosti složeného výroku rozhodovat tabulkou.
3) Logika prvního řádu (opraveno ↑ check_drummer: ): je logika kvantifikovaných výrokových forem. Výrokový forma je "výrok", který obsahuje proměnnou, a o jehož pravdivosti nelze rozhodnout (číslo n je prvočíslo). Rozhodnout můžeš až buď
a) dosadíš za proměnnou (číslo pět je prvočíslo)
anebo
b) výrokovou formu kvantifikujeě
Existuje číslo, které je prvočíslo - existenční výrok
Každé číslo je prvočíslo - obecný výrok.
Výroková forma platí obecně v případě, kdy je pravdivý příslušný obecný výrok. ¨
Dvojciferné prvočíslo je liché. Je výroková forma (nevíš konkrétně, o jakém prvočísle je řeč), ale platí obecně, protože každé dvojciferné prvočíslo je liché.
Prvočíslo je liché. Je to výroková forma, která obecně neplatí, protože výrok "každé prvočíslo je liché" je nepravdivý.
Offline
Eratosthenes napsal(a):
2) Logika prvního řádu: je logika složených výroků, tj. dvou, anebo více individuálních výroků spojených logickými spojkami. Tam už tě nezajímá obsah individuálních výroků. Musíš o nich vědět jenom to, zda jsou pravdivé, anebo nepravdivé. A pak můžeš o pravdivosti složeného výroku rozhodovat tabulkou.
3) Logika druhého řádu: je logika kvantifikovaných výrokových forem. Výrokový forma je "výrok", který obsahuje proměnnou, a o jehož pravdivosti nelze rozhodnout (číslo n je prvočíslo). Rozhodnout můžeš až buď
Tak to není - logika prvního řádu je stručně řečeno logika s kvantifikátory, kde je povoleno kvantifikovat jen individua universa (proměnné). Je to v podstatě to nejběžnější s čím v matematice pracujeme.
Logika vyšších řádu je taková, že lze kvantifikovat i predikáty - např. existuje predikát splňujcíí to a to, apod.
Viz také třeba wikipedie nebo učebnice logiky.
Offline
MichalAld napsal(a):
Nebo je jiná tabulka když řeknu "tvrzení neplatí" a jiná když řeknu "tvrzení obecně neplatí" ?
Když máš nějaké tvrzení, o kterém říkáš, že "obecně" platí, tak je to většinou tak, že toto tvrzení je kvantifikováno obecným kvantifikátorem. Tedy P(x) obecně platí - pokud platí [mathjax](\forall x)P(x)[/mathjax], tj. P musí platit pro všechna x.
Jak jsem psal už dřív - implikace se v drtivě většině případů nepoužívá jako výrok P=>Q, ale jako výrok [mathjax](\forall x)(P(x) \Rightarrow Q(x))[/mathjax], kde x je nějaká proměnná. (Samozřejmě P,Q mohou záviset na více proměnných než na jedné - ale ber to třeba tak, že potom je x nějaký vektor se složkami.)
Pak tvrzení, že tato implikace obecně neplatí, znamená, že existuje nějaké x0, kdy ta implace neplatí, tj. kdy implikace [mathjax]P(x_0) \Rightarrow Q(x_0)[/mathjax] neplatí, tj. kdy platí P(x0) a neplatí Q(x0).
Nebo ještě jinak - impliakce [mathjax]P(x) \Rightarrow Q(x)[/mathjax] nemusí obecně platit, protože neplatí pro všechna x, ale pro nějaké x1 může platit implikace [mathjax]P(x1) \Rightarrow Q(x1)[/mathjax].
Offline
↑ check_drummer:
Už blbnu a omlouvám se. Řád nikoliv jedna a dva, ale samozřejmě nula a jedna :-) Opravuji...
Offline