Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 22. 05. 2023 20:34

kastanek
Příspěvky: 180
Škola: G
Pozice: student
Reputace:   
 

Eulerův vzorec

Je nějaký důkaz Eulerova vzorce, který by šel vysvětlit pomocí středoškolské matematiky, tzn. bez Taylorova rozvoje?

Offline

 

#2 22. 05. 2023 21:12

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ kastanek:
Ahoj, a jak máte definováno číslo [mathjax]e^{a.i}[/mathjax]?


"Máte úhel beta." "No to nemám."

Offline

 

#3 22. 05. 2023 21:46

kastanek
Příspěvky: 180
Škola: G
Pozice: student
Reputace:   
 

Re: Eulerův vzorec

↑ check_drummer:
No o to právě jde, dokázat, že exp(a·i) = cos(a) + i·sin(a). Myslel jsem nějaký třeba geometrický důkaz, mám pocit, že jsem něco takového kdysi kdesi viděl...

Offline

 

#4 22. 05. 2023 22:12 — Editoval check_drummer (22. 05. 2023 22:13)

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ kastanek:
Ale já se ptám na to jak je definován symbol exp(a·i) a ne co pro něj platí. Abys něco mohl použít musíš to nejdřív definovat. Takže se ptám jak je definováno exp(a·i). A potom až můžeme zjišťovat co pro takový symbol platí.

Např. jednou z možných definicí toho symbolu může být to co uvádíš ty - ale pak se nejdená o tvrzení, ale o definici.


"Máte úhel beta." "No to nemám."

Offline

 

#5 22. 05. 2023 22:16

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

Podle mě jediné co můžeš je hledat nutný tvar toho symbolu, aby pro něj platilo totéž co pro exponenciální funkci - a pak dospěješ k tomu, že nutný tvar je ten, který uvádíš. Podle mě to bude plynout z Moivrovy věty.


"Máte úhel beta." "No to nemám."

Offline

 

#6 22. 05. 2023 22:27

kastanek
Příspěvky: 180
Škola: G
Pozice: student
Reputace:   
 

Re: Eulerův vzorec

↑ check_drummer:
Nerozumím otázce. Ten výraz je definovaný sám o sobě, "e" je Eulerovo číslo, "i" je imaginární jednotka a "a" je argument (úhel), všechno jsou jasně definované hodnoty. A mně jde o to, jak z toho odvodit, že se to rovná cos(a) + i·sin(a).

Offline

 

#7 22. 05. 2023 22:57

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ kastanek:
To doufám nemyslíš vážně. To je jako kdybych řekl, že bagr, tráva a oparace "+" jsou jasně definované věci a tedy je jasně definováno i bagr+tráva. Abys něco definoval nestačí poskládat za sebe známé objekty.

Jak je tedy podle tebe exp(a·i) definováno? Je to komplexní číslo? Pokud ano, jaká je jeho reálná a imaginární složka? Pokud to není tvá definice schopna vyjádřit, tak se nejedná o definici...


"Máte úhel beta." "No to nemám."

Offline

 

#8 22. 05. 2023 23:52

kastanek
Příspěvky: 180
Škola: G
Pozice: student
Reputace:   
 

Re: Eulerův vzorec

↑ check_drummer:
Neřeš to. Možná se k tomu vyjádří někdo jiný. Jen jsem chtěl jiný důkaz než přes Taylorův rozvoj, dotaz jasný jak facka.

Offline

 

#9 23. 05. 2023 09:26

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ kastanek:
Každý kdo by takový důkaz chtěl podat bude mít stejnu otázku jako já.


"Máte úhel beta." "No to nemám."

Offline

 

#10 23. 05. 2023 09:39

kastanek
Příspěvky: 180
Škola: G
Pozice: student
Reputace:   
 

Re: Eulerův vzorec

↑ check_drummer:
Kladu si jedinou podmínku: aby to bylo pomocí středoškolské matematiky. Nijak jinak neomezuju žádné pojmy, které by kdokoliv chtěl použít.
Tzn., číslo exp(a·i) není nijak definováno (umocňování na imaginární exponent totiž není středoškolská látka), jde mi o přesný opak, z cos(a) + i· sin(a) dokázat, že se to rovná exp(a·i). A následně pak pomocí tohoto vztahu definovat obecnou komplexní mocninu (to už by pak šlo středoškolsky snadno).

Offline

 

#11 23. 05. 2023 19:47

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ kastanek:
Jak můžeš dokázat, že se nějaký výraz rovná výrazu, který označuješ jako "exp(a·i)", když nedefinuješ co to "exp(a·i)" je? To prostě není možné.

Nemusíš "exp(a·i)" definovat explicitně nějakým výrazem. Můžeš ho klidně definovat implicitně nějakou podmínkou - ale musíš pak ukázat, že tak je ten výraz již jednoznačně určen. Třeba si umím představit že by se dal ten výraz definovat tak, že je to komplexní číslo, které má jednotkovou délku a když ho chápeme jako funkci proměnná a, že se chová jako exponenciela, tj. splňuje vztahy, které splňuje exponenciální funkce. Možná tam bude potřeba ještě něco pro dosažení jednoznačnosti.

Jinak rovnost je symetrická relace, takže je úplně jedno jestli dokážeš, že se cos(a) + i· sin(a) rovná exp(a·i) - anebo zda dokážeš že se exp(a·i) rovná cos(a) + i· sin(a).

A jestli teda chceš pomocí toho vztahu definovat komplexní mocninu, tak prostě definuj, že exp(a·i) definujeme jako cos(a) + i· sin(a) (to jsem psal už výše). A pak můžeš dokázat, že se chová tak jak bychom od mocniny očekávali (Moivrova věta, součtové vzorce pro sin,cos).


"Máte úhel beta." "No to nemám."

Offline

 

#12 23. 05. 2023 23:04

kastanek
Příspěvky: 180
Škola: G
Pozice: student
Reputace:   
 

Re: Eulerův vzorec

↑ check_drummer:
Tady je hezký důkaz, ale vyžaduje znalost derivování:
Odkaz

Offline

 

#13 23. 05. 2023 23:16

MichalAld
Moderátor
Příspěvky: 5047
Reputace:   126 
 

Re: Eulerův vzorec

Já myslím, že se středoškolskou matematikou (tj. s algebrou) se nejde dostat ani k tomu číslu e. Stejně tak je problém i s funkcemi sin(x) a cos(x). Protože na střední škole (no, možná už na základní) se učíme, že argumentem sinu a cosinu je "úhel", a úhel můžeme měřit v mnoha různých jednotkách. A není žádný zvláštní důvod se domnívat, že některá z jednotek úhlu je něčím speciální, nějak přirozená.

Teprve když dokážeme převádět funkce na mocninné řady, objeví se spousta hlubších souvislostí. A pak také můžeme rozšiřovat definiční obory těch funkcí ... pak už argumentem nemusí být jen reálné číslo, ale cokoliv, co dokážeme celočíselně umocnit. Což mohou být ta komplexní čísla, nebo třeba taky matice.

Ale bez toho máme poněkud svázané ruce. I když víme, jak se v principu určí hodnota [mathjax]e^x[/mathjax], nebo třeba aspoň [mathjax]10^x[/mathjax], kde x je reálné číslo, nijak z toho neplyne, jaká je hodnota když je x číslo imaginární, nebo komplexní. To musíme prostě rozšířit naši definici (na což se kolega check_drummer snažil opakovaně poukázat). Musíme prostě vymyslet takovou definici, aby nám pro reálná čísla dala stejný výsledek jako naše původní definice, a pro komplexní čísla ... no, to je otázka, co máme vlastně chtít. To nikdo dopředu neví. Ale když budeme chtít, aby rozvoj funkce do mocninné řady vedl ke stejné řadě v reálném i v komplexním oboru, tak máme problém tak nějak vyřešený.

Offline

 

#14 23. 05. 2023 23:19

MichalAld
Moderátor
Příspěvky: 5047
Reputace:   126 
 

Re: Eulerův vzorec

Takže ve volném čase můžeš bádat nad tím, jak se vypočítá hodnota [mathjax]e^X[/mathjax], kde X je matice třeba 2x2.

Offline

 

#15 23. 05. 2023 23:23

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ MichalAld:
Škoda že jsi nenapsal [mathjax]e^{i.X}[/mathjax], to by určitě bylo rovné cos(X)+i.sin(X). :-) Ale jen tak pro zajímavost - jak by bylo nutné definovat cos(X) a sin(X), aby ta rovnost platila? Ale možná by to ani rozumně nešlo...


"Máte úhel beta." "No to nemám."

Offline

 

#16 23. 05. 2023 23:36

kastanek
Příspěvky: 180
Škola: G
Pozice: student
Reputace:   
 

Re: Eulerův vzorec

↑ MichalAld:
Hezky vysvětlené, díky.

Offline

 

#17 23. 05. 2023 23:46 — Editoval MichalAld (23. 05. 2023 23:47)

MichalAld
Moderátor
Příspěvky: 5047
Reputace:   126 
 

Re: Eulerův vzorec

↑ check_drummer:
Ale jo, s tím není žádný problém, pokud umíme mocnit matice, což umíme, protože je umíme násobit, tak můžeme matice používat jako argument pro každou "rozumnou" funkci.

[mathjax]f(X) = a_0 X^0 + a_1X^1 + a_2X^2 + ...[/mathjax]


No, ale dá se ještě udělat takový hezký trik (teda, myslel jsem, že to znáš, já přeci jen žádný matematik nejsem), že matici X můžeme napsat pomocí matice vlastních čísel.

[mathjax]X = P \cdot \Lambda \cdot P^{-1}[/mathjax]

a potom

[mathjax]X^2 = (P \cdot \Lambda \cdot P^{-1})\cdot(P \cdot \Lambda \cdot P^{-1})=P \cdot \Lambda^2 \cdot P^{-1}[/mathjax]

No a matice co má na diagonále vlastní čísla a jinde nuly už se umocňuje snadno, protože se prostě umocní ta jednotlivá čísla na diagonále. Takže výsledek je nakonec docela jednoduchý,

[mathjax]e^X = P \cdot diag(e^{\lambda_1}, e^{\lambda_2}, ...e^{\lambda_n}) \cdot P^{-1} [/mathjax]

PS: je možné, že jsem tam něco trochu pomotal, a samozřejmě to funguje jen s regulárními čtvercovými maticemi. Ale hezky se to dá použít k řešení soustav lin. dif. rovnic

[mathjax]\frac{dX}{dt} = A \cdot X[/mathjax]

[mathjax]X = e^{-A \cdot t}[/mathjax]

Offline

 

#18 24. 05. 2023 01:39

laszky
Příspěvky: 2376
Škola: MFF UK, FJFI CVUT
Reputace:   197 
 

Re: Eulerův vzorec

↑ MichalAld:

Ahoj, rekl bych, ze ten tvuj postup funguje i pro singuarni matice. Dulezitejsi ale je, ze museji byt diagonalizovatelne ;)

Offline

 

#19 24. 05. 2023 08:25 — Editoval check_drummer (24. 05. 2023 08:27)

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ MichalAld:
To ale definuješ exponenciální funkci matici, to je ok, to je celkem známá věc. Mně šlo o to definovat cos(X) a sin(X), kde X je matice. Ale možná by to šlo udělat prostě tak, že vezmeme reálnou a imaginární složku matice e^{iX}. Otázka je, zda by taková definice měla nějaké použití.

Jinak teda podle mě exponenciela matice lze definovat úplně pro každou matici, pomocí řady ne? Nevím ale jak je to s konvergencí, ale možná půjde dokázat že konverguje vždy, podobně jako řada pro normální exponencielu.


"Máte úhel beta." "No to nemám."

Offline

 

#20 24. 05. 2023 10:12

MichalAld
Moderátor
Příspěvky: 5047
Reputace:   126 
 

Re: Eulerův vzorec

Pro funkci sin se to dá udělat úplně stejně … vyjádřit ji jako řadu a  na místo x dát X.

A ano, I Exponenciála imaginární matice má své použití stejně jako lineární diferenciální rovnice s imaginární mi koeficienty běžně se to používá v kvantové mechanice

Offline

 

#21 24. 05. 2023 14:05 — Editoval check_drummer (24. 05. 2023 14:06)

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ MichalAld:
No a paltí i pro matice Eulerův vzorec? Asi ano, když ty řady jsou formálně stejné jako pro reálnou proměnnou ne?


"Máte úhel beta." "No to nemám."

Offline

 

#22 25. 05. 2023 01:05

MichalAld
Moderátor
Příspěvky: 5047
Reputace:   126 
 

Re: Eulerův vzorec

↑ check_drummer:
No jo, platí to i pro matice. Když rozepíšeme jednotlivé funkce do řad, tak vidíme, že funkce sin obsahuje liché mocniny a funkce cos zase sudé mocniny, a alternující znaménka. exponenciální funkce obsahuje všechny mocniny a všechna znaménka jsou kladná. Ale když tam namísto x dosadíme ix (případně namísto X iX), tak u členů s lichými mocninami zůstane to i, zatímco u členů se sudými mocninami né. A zároveň se nám tam objeví ta znaménka, protože i^2 = -1. Takže polovina členů bude mít i, a druhá né, a když to tedy rozdělíme na dvě řady, tak vidíme, že jsou to řady sinu a cosinu. To zařídí to i, bez ohledu na to, co je x, jestli číslo, nebo matice nebo něco jiného.

Offline

 

#23 25. 05. 2023 17:54

check_drummer
Příspěvky: 4897
Reputace:   105 
 

Re: Eulerův vzorec

↑ MichalAld:
Akorát je potřeba vyšetřit konvergenci.


"Máte úhel beta." "No to nemám."

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson