Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
22. 8. 2021 (L) Přecházíme zpět na doménu forum.matweb.cz!
04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#601 29. 12. 2021 00:23

Brano
Příspěvky: 2651
Reputace:   229 
 

Re: Limitny maraton

112.
napoveda 2:

Offline

 

#602 01. 02. 2022 08:23

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: Limitny maraton

(113) [mathjax]\displaystyle \int^{1}_{0}\frac{\ln(x+1)}{x^2+5x+6}dx[/mathjax]

Offline

 

#603 06. 02. 2022 01:03 — Editoval Brano (06. 02. 2022 01:14)

Brano
Příspěvky: 2651
Reputace:   229 
 

Re: Limitny maraton

↑ stuart clark:
it is not really a limit, but here is a solution

(113)

Offline

 

#604 08. 02. 2022 17:22

check_drummer
Příspěvky: 4658
Reputace:   102 
 

Re: Limitny maraton

↑ Brano:
Hi, it is a limit of upper (lower) integral sums. :-)


"Máte úhel beta." "No to nemám."

Offline

 

#605 27. 04. 2022 11:53

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: Limitny maraton

(114) : Evaluation of [mathjax]\displaystyle \int \frac{2(x^2\sec^2(x)-3)}{(x\sec^2(x)-3\tan(x))^2}dx[/mathjax]

Offline

 

#606 15. 08. 2022 15:00

vanok
Příspěvky: 14463
Reputace:   741 
 

Re: Limitny maraton


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#607 16. 08. 2022 11:52

Bati
Příspěvky: 2435
Reputace:   191 
 

Re: Limitny maraton

Hi ↑ vanok:.
[mathjax2]S=\sum_{n=1}^{\infty}\frac{1}{\sinh{2^n}}=\sum_{n=1}^{\infty}\frac{2}{e^{2^n}-e^{-2^n}}[/mathjax2]
Solution:



Problems (114) and (112) still stand, so I will not add more.

Offline

 

#608 17. 03. 2023 10:43 — Editoval stuart clark (17. 03. 2023 10:44)

stuart clark
Příspěvky: 1015
Reputace:   
 

Re: Limitny maraton

(116) : Evaluation of [mathjax]\displaystyle \int^{\infty}_0\bigg(\frac{x+1}{x+2}\cdot \frac{x+3}{x+4}\cdot \frac{x+5}{x+6}\cdots \cdot \cdots \bigg)dx[/mathjax]

Offline

 

#609 05. 04. 2023 17:13

Bati
Příspěvky: 2435
Reputace:   191 
 

Re: Limitny maraton

↑ stuart clark:
(116)

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson